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Abstract

The worldwide transformation of electricity production from fossil and nuclear energy
sources to renewable energy sources is accompanied by many challenges. One of those
challenges is finding an equilibrium of supply and demand – an important balance
for the stability of electric grids. Production and consumption are kept in balance by
adapting electricity production to consumption. Most renewable energy sources do
not produce energy when demanded, but when natural conditions are suitable. As
energy cannot yet be stored efficiently, over-production is as much of a problem as
underproduction. Demand Response (DR) is the means for end-users to contribute
to the balancing challenge. Providing the end-users with an incentive such as time-
based pricing that changes according to the supply will encourage users to contribute
to the equilibrium. Users’ contribution usually has implications for their daily habits
and can be associated with discomfort, thus it requires a high level of involvement.
Lowering the required involvement is therefore seen as an important step toward an
acceptance of time-based pricing. Since the 1980s, machine learning has been seen
as a solution to lower the barrier for private households to participate. The idea is
to provide households with information about their electricity consumption, make
recommendations on behavior changes or take automated actions. Such information
can be retrieved from monitoring a household’s electricity consumption.

This thesis contributes to the process of extracting information and knowledge
from monitored electricity consumption in private households using machine learning.
An overview of data sources and general approaches is provided. Based on this
research, the Machine Learning Demand Response Model (MLDR) is introduced,
defining the relation between data, knowledge, and actions. This model enhances
the understanding of the individual steps required to transform monitored electricity
consumption data into individual recommendations or automated actions. These
steps are: data monitoring, appliance identification, appliance usage segmentation,
and appliance usage prediction. For each of these steps, this thesis provides an
overview of the current research state and introduces new approaches.

A new monitoring system for both individual appliances and household mains
is introduced. The system was used to collect a scientific dataset called Domestic
Energy Demand Dataset of Individual Appliances in Germany (DEDDIAG). It con-
tains measurements of 50 individual appliances located in 15 homes, recorded with a
sample rate of 1 Hz over a period of up to 3.5 years. The dataset has been enriched
with manual appliance usage annotations as well as demographic data describing
the household. The system, as well as the dataset, has been published under an
open-source license.

Based on this dataset, an appliance category identification algorithm is intro-
duced. The algorithm extracts features using a wavelet transformation and classifies
data using the k-Nearest-Neighbor (kNN) classifier. It was evaluated and published
as a challenge baseline for DEDDIAG. Next to this approach that relies on low sample
rates, a high sample rate algorithm is introduced. The algorithm is based on trans-
forming one voltage-current cycle, known as the voltage-current (V-I) trajectory, into
two separate Recurrence Plots (RPs) which are then classified using a Convolutional
Neural Network (CNN) in combination with Spacial Pyramid Pooling (SPP). The al-



gorithm is evaluated on three different datasets and compared to previously proposed
algorithms.

Finding the start and stop of an appliance is the basis for deriving usage patterns.
This appliance event segmentation has received little attention from other researchers,
and the most commonly used algorithm, a lower-bound thresholding approach, has
never been evaluated. Using the manual annotations created for DEDDIAG, this
approach is evaluated using a newly introduced performance metrics called Jaccard-
Time-Span-Event-Score (JTES). Together with this, a new segmentation algorithm
using Support Vector Machine (SVM) is presented.

Finally, based on the usage events that were determined, a combined statistical
model for appliance usage prediction is introduced. It predicts future appliance usage
based on the preferred time of day and the elapsed time since it was used last. It is
evaluated on the GREEND dataset as well as the DEDDIAG. The thesis concludes
with an outlook of potential future work.



Zusammenfassung

Das Ziel, den weltweiten Strombedarf durch erneuerbare Energien wie Wind, Solar
und Wasser zu decken birgt viele Herausforderungen. Eine dieser Herausforderun-
gen ist das Gleichgewicht aus Angebot und Nachfrage, welche für die Stabilität des
Stromnetzes unabdingbar ist und bisher ausschließlich über die Produktion geregelt
wird. Bei einem Großteil der erneuerbaren Energien lässt sich die Stromproduk-
tion jedoch nicht beliebig steuern, da sie von veränderlichen Umweltgegebenheiten
abhängig ist. Angesichts dessen, dass Strom nicht in großen Mengen effizient gespe-
ichert werden kann, stellt die Überproduktion ein ebenso großes Problem dar wie
die Unterproduktion. Eine Lösungsansatz dafür ist die Lastverschiebung, wobei der
private Verbraucher seinen Bedarf an die Produktion anpasst. Diesem wird hierfür
ein finanzieller Anreiz in Form eines dynamischen Strompreises angeboten. Allerd-
ings stellt diese Anpassung sehr hohe Anforderungen an den Verbraucher. Bereits in
den 1980er Jahren entstand deshalb die Idee, zur Reduzierung des Aufwands für den
Verbraucher maschinelles Lernen einzusetzen. Durch die Analyse von Stromdaten
können damit dem Verbraucher Vorschläge für Nutzungsanpassungen gemacht oder
auch Geräte automatisiert gesteuert werden. Ziel dieser Arbeit ist die Entwicklung
neuer Methoden zur Informations- und Erkenntnisgewinnung aus Strommessungen
privater Haushalte mittels maschineller Lernverfahren.

Zunächst werden die Grundlagen zu Datenquellen und zum generellen Vorgehen
vorgestellt. Hieraus wird ein neues Modell abgeleitet, Machine Learning Demand
Response Model (MLDR) genannt, welches die Zusammenhänge der notwendigen
Daten und Schritte modelliert. Diese Schritte sind das Aufzeichnen von Daten, die
Erkennung einzelner Geräte, die Segmentierung von Gerätenutzungen, sowie deren
Vorhersage. Zu jedem dieser Schritte wird der aktuelle Stand der Forschung betra-
chtet und neue Verfahren vorgestellt.

Des Weiteren wird ein neues Messsystem für die Aufzeichnung von Stromver-
brauchsdaten einzelner Geräte sowie eines gesamten Haushaltes beschrieben, mit dem
der Forschungsdatensatz Domestic Energy Demand Dataset of Individual Appliances
in Germany (DEDDIAG) aufgezeichnet wurde. Der Datensatz umfasst Messungen
von 50 Geräten aus 15 Haushalten, die über einen Zeitraum von bis zu 3,5 Jahren mit
einer Frequenz von 1 Hz aufgezeichnet wurden. Neben den reinen Messdaten enthält
dieser Datensatz auch manuelle Annotationen von Gerätenutzung und demographis-
che Daten des Haushalts. Sowohl das Messsystem als auch der Datensatz sind unter
einer freien Lizenz veröffentlicht.

Auf Basis dieses Datensatzes wurde eine Gerätekategorieerkennung entwickelt.
Diese basiert auf Wavelet-Merkmalen und dem k-Nearest-Neighbor (kNN) Klassi-
fikator und wurde als Referenzwert für den Datensatz veröffentlicht. Neben diesem
Ansatz wird ein weiteres Verfahren zur Geräteerkennung vorgestellt, welches jedoch
deutlich höher auflösende Messungen benötigt. Dieses erkennt Geräte anhand von
Strom-/Spannungsschwingungen, voltage-current (V-I) trajectory genannt. Strom
und Spannung werden hierbei in zwei Recurrence Plots (RPs) umgewandelt und mit
Hilfe eines Convolutional Neural Network (CNN) und Spacial Pyramid Pooling (SPP)
klassifiziert. Der Algorithmus wird anhand von drei Datensätzen evaluiert und mit
einem ähnlichen Verfahren verglichen.



Die unterschiedlichen Zeitpunkte der Gerätenutzung sind die Grundlage um Ver-
braucherverhalten zu verstehen. Für gewöhnlich wird diese Segmentierung von Mess-
daten mit einem Schwellwertverfahren durchgeführt. Da dieses Verfahren nur wenig
erforscht und validiert ist, erfolgt eine Evaluierung unter Zuhilfenahme des DED-
DIAG Datensatzes. Des Weiteren wird ein auf Support Vector Maschinen (SVM)
basierender Segmentierungsalgorithmus vorgestellt.

Unter Verwendung der so gefundenen Gerätenutzungen wird ein statistisches
Verfahren zur Vorhersage zukünftiger Gerätenutzungen eingeführt. Die Vorhersage
basiert auf den gewöhnlichen Nutzungszeiten und dem gewöhnlichen Abstand zwis-
chen Nutzungen. Das Verfahren wird unter Verwendung des GREEND sowie des
DEDDIAG Datensatzes evaluiert. Abschließend wird ein Ausblick für zukünftige
Forschungsbedarfe gegeben.
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1.1 Motivation
The modern world’s largest threat remains rapid climate change with its most promi-
nent indicator, the increasing global temperature. Electricity consumption is a major
contributor to global warming and in 2019 63% of the world-wide electricity is still
generated by burning fossil fuels [bp p 20]. Our technophile society maintains high
hopes that modern technologies will solve the majority of these problems amid the
ever-present rejection of behavioral change. In reality, these new technologies come
with side effects such as a complexity increase. In order to handle this complexity,
again new technologies are required. This complexity dilemma can also be found in
energy generation from renewable sources.

A major attribute of most renewable energy sources, such as wind turbines or
photo-voltaic systems, is the highly variable power production volume. Most re-
newable energy sources do not produce energy when demanded, but when natural
conditions are suitable. A wind turbine generates energy in windy weather condi-
tions, a photo-voltaic system when the sun is shining, and during daylight when it is
less overcast. As energy cannot yet be stored very efficiently, over-production is as
much of a problem as underproduction. Additionally, these systems are designed in a
distributed way and with less scale compared to a single large power plant. According
to the EN50160 regulation, the grid operator and energy suppliers are responsible for
the grid’s stability, which is highly affected by fluctuating energy demand and supply.
The key factor for energy grid quality is an equilibrium of demand and supply. A
deviation from the equilibrium will result in frequency fluctuations: An undersupply
results in a reduced grid frequency and an oversupply in an increased frequency. The
reason for these frequency fluctuations can be explained in a simplified scenario with
a single generator. An increase of the active power drawn from the generator will
increase the torque on the generator, thus without any countermeasures slowing down
the rotational speed and lowering the utility frequency [Schw 09].

While grid operators always had to adjust to fluctuations on the demand side, the
supply was a fairly stable part of the system since a few large power plants can be eas-

1
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ily regulated to adjust to the demand. The general rule for energy production is: if the
grid frequency f > 50.2 Hz, the effective power has to be reduced until f ≤ 50.05 Hz.
If this rule is applied independently at all plants, the grid might become even more
unstable which has led to more sophisticated regulation [Scha 17]. In today’s regula-
tion model, only the supply side is responsible to maintain the grid quality, although
all participants, including the demand side (the customer), are introducing changes
to the system that lead to frequency changes. One step towards engaging the de-
mand side would be to ask customers to adapt their demand to the supply. In order
to encourage a customer to act, an incentive would need to be introduced [Gell 85].
This process is known as Demand Response (DR). There are clear differences when
comparing the DR potential of different countries [Gils 14]. The contribution each
consumer sector has in the overall DR potential depends on the flexibility of energy-
intensive industries as well as the residential equipment, such as electric heating, air
conditioning and washing appliances. DR creates a decision-making challenge for res-
idents in a complex system, where for every usage of an appliance, its electrical load
and the electricity price need to be estimated to make a cost versus need decision. Al-
tering our electric usage is accompanied by discomfort, created by adding constraints
on every day’s habits. Incentives such as lower electricity prices have a limit in their
effect. A study on the effectiveness of financial incentives to enable DR has shown
that the participants were willing to adapt their practices to fluctuations in produc-
tions, as long as it does not rule their lives [Ozak 18]. Reducing the complexity of
the task is necessary to increase the acceptance by the end-user [Quan 05]. Analyzing
one’s daily electricity habits and deriving automated recommendations is seen as the
solution to lower the implication on daily habits. This analysis can be performed
on monitored electricity consumption, either by monitoring each appliance directly
or through a single metering point, also known as a smart meter. A wide range of
machine learning practices have been developed and applied over the years to identify
appliances, find usage patterns, and electricity profiles, and predict appliance usage.
Despite the many years of research, the techniques are still subject of research and
have not yet found their way into our lives. This thesis aims to model the relation
between the required task by providing an extensive literature review on developed
practices. Based on this review, a model of how to extract the relevant knowledge to
lower the complexity of DR from household electricity data was developed. For each
of the steps in the proposed model, a good scientific practice is proposed and applied
to newly developed algorithms. All in the aim to work towards applicable computer
aided DR.
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1.2 Contributions to the Progress of Research

This work contributes to the overall systematic understanding of machine learning in
DR. An introduction into the field of DR and it required infrastructure is given.

[Goel 18] T. Goeller, M. Wenninger, and J. Schmidt. “Towards Cost-Effective
Utility Business Models - Selecting a Communication Architecture for
the Rollout of New Smart Energy Services”. In: Proceedings of the 7th
International Conference on Smart Cities and Green ICT Systems -
Volume 1: SMARTGREENS,, pp. 231–237, INSTICC, SciTePress, 2018

Further, a new Machine Learning Demand Response Model (MLDR) is intro-
duced, which shows the relations between data, knowledge, and actions associated
with assisting with the DR process. It describes a detailed knowledge extraction
model for approaches relying on electricity consumption monitored within a house-
hold. For each of these steps, a contribution with a focus on good scientific practice
has been made. Established terminology has been gathered, potential terminology
conflicts have been identified, and new terminology has been proposed.

1.2.1 Data

A data source for DR is everything that helps to understand the demand, behavior,
and needs of a household. The primary source is electricity consumption measure-
ments monitored at each appliance in a household. Next to the individual appliance
readings, the total electricity consumption may be of interest. For this purpose, re-
searchers have recorded and published a number of datasets using different sample
rates and focusing on different aspects. Datasets with recording lasting over several
months or years are sparse. Further, datasets recorded in Europe, especially Ger-
many, are sparse or do not exist. Also, no monitoring software and hardware has
been published that can be used to collect such datasets. Commonly the software
was not published and the hardware was custom-built.

Thus, an open-source monitoring system was developed and the software as well as
the used hardware was published. Unlike previously described monitoring systems for
research purposes, the system uses hardware that is readily available for purchase at a
very low cost. This system was used to collect a dataset containing 50 appliances from
15 private households at a sample rate of 1 Hz. The dataset contains manual usage
annotations, which are required to develop and evaluate appliance usage segmentation
algorithms. Such manual annotations are not available for any of the other existing
datasets.

[Wenn 21b] M. Wenninger, A. Maier, and J. Schmidt. “DEDDIAG, a domes-
tic electricity demand dataset of individual appliances in Germany”.
Scientific Data, Vol. 8, No. 176, July 2021
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1.2.2 Appliance Identification
One of the most researched topics in computer-aided DR is the identification of
appliances. In machine learning terms, the identification of an appliance based on
the monitored electricity consumption is a time series classification problem. The
established approaches can be divided into low and high sample rates. A contribution
has been made to both, low and high-sample rate approaches. Based on the collected
Domestic Energy Demand Dataset of Individual Appliances in Germany (DEDDIAG)
dataset, a new appliance identification algorithm has been proposed and published.
The evaluation acts as a challenge baseline for future identification tasks performed
on the published dataset.

[Wenn 21b] M. Wenninger, A. Maier, and J. Schmidt. “DEDDIAG, a domes-
tic electricity demand dataset of individual appliances in Germany”.
Scientific Data, Vol. 8, No. 176, July 2021

A high sample rate approach has been developed based on Recurrence Plot (RP)
and Convolutional Neural Network (CNN). The idea to incorporate RP first led to
the development of a robust time series classification pipeline. This generic time se-
ries approach was evaluated on the UCR Time Series Classification Archive [Dau 18].
Based on this work, a high sample rate appliance identification approach was devel-
oped which converts the voltage-current (V-I) trajectory into a RP. The approach
was evaluated on three different datasets. A similar approach was been proposed be-
fore, but relying on manually tuned hyperparameters [Faus 20, Faus 21]. The author’s
results could not be reproduced and as part of the publication of the new approach,
our reevaluated results have been published.

[Wenn 19a] M. Wenninger, S. P. Bayerl, J. Schmidt, and K. Riedhammer. “Tim-
age – A Robust Time Series Classification Pipeline”. In: Artificial
Neural Networks and Machine Learning - ICANN 2019: Text and
Time Series, pp. 450–461, Springer International Publishing, Cham,
2019

[Wenn 21a] M. Wenninger, S. P. Bayerl, A. Maier, and J. Schmidt. “Recurrence
Plot Spacial Pyramid Pooling Network for Appliance Identification in
Non-Intrusive Load Monitoring”. In: 20th IEEE International Con-
ference on Machine Learning and Applications - ICMLA 2021, 2021

1.2.3 Appliance Segmentation
Any appliance usage statistics require knowing an appliance’s start and stop in order
to derive usage patterns and load profiles. Finding these appliances’ starts and stops
means segmenting the monitored electricity consumption. The appliance segmenta-
tion only received little attention from other researchers. Based on the DEDDIAG
dataset, the most commonly used lower bound thresholding algorithm was been eval-
uated. This thresholding algorithm is commonly used but has never been evaluated.
Using the manual usage annotations from the DEDDIAG dataset showed the limita-
tions of this approach. Second, a new Support Vector Machine (SVM) based algo-
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rithm has been proposed to overcome the limitations of the thresholding approach.
To improve the real-world relation of the performed evaluations, a new performance
metric called Jaccard-Time-Span-Event-Score (JTES) was developed. The impor-
tance of segmentation algorithms is underestimated and their evaluation has received
little research attention. Important steps towards understanding the importance of
the segmentation task and its performance evaluation have been contributed.

[Wenn 21b] M. Wenninger, A. Maier, and J. Schmidt. “DEDDIAG, a domes-
tic electricity demand dataset of individual appliances in Germany”.
Scientific Data, Vol. 8, No. 176, July 2021

[Wenn 19b] M. Wenninger, D. Stecher, and J. Schmidt. “SVM-Based Segmenta-
tion of Home Appliance Energy Measurements”. In: 18th IEEE Inter-
national Conference on Machine Learning and Applications - ICMLA
2019, pp. 1666–1670, 2019

1.2.4 Usage Prediction
Appliance identification and segmentation are performed in order to derive appliance-
specific usage and load patterns. Historic usage patterns can be utilized to predict
future appliances usages. Short-term prediction commonly only describes the next
1—24 h, while long-term predictions may describe up to several months ahead. The
short-term predictions are the main focus in terms of automated operation of appli-
ances or recommendation systems. A combined statistical method is proposed and
evaluated on two different datasets, GREEND and DEDDIAG. For the latter, the
manual annotations are used to train the thresholding algorithm. Commonly the used
thresholds are simply estimated by researchers and their performance is unknown.
Therefore, the evaluation of usage predictions commonly suffers from an unknown
amount of errors made in the required segmentation step.

[Wenn 17] M. Wenninger, J. Schmidt, and T. Goeller. “Appliance Usage Pre-
diction for the Smart Home with an Application to Energy Demand
Side Management - And Why Accuracy is not a Good Performance
Metric for this Problem”. In: Proceedings of the 6th International Con-
ference on Smart Cities and Green ICT Systems - Volume 1: SMART-
GREENS,, pp. 143–150, INSTICC, SciTePress, 2017

1.3 Outline
The structure of this thesis is as follows:

Chapter 2 briefly describes the concept of load balancing and the origin of De-
mand Side Management (DSM). First, the practical problems that arise as a result
of transforming electricity production from fossil and nuclear to renewable energy
sources are laid out. The concept of DR and its relation to smart grids is explained.
Different models of dynamic electricity pricing are discussed. The chapter ends with
a brief overview of customer acceptance studies on DR and dynamic prices.
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Chapter 4 lays out the principles of machine learning in DR. The DR process is
modeled as an optimal control system as a basis to understand the complex system.
Possible data sources and how to extract knowledge from those are discussed and
research datasets are reviewed. Commonly used derived values (features) of the raw
data and commonly used performance metrics are presented. The chapter finalizes
with the introduction of a new model for machine learning in DR.

In Chapter 5 an electricity data collection system as well as the resulting dataset
called DEDDIAG are presented. An overview of the hard- and software requirements,
the design decisions, and an explanation of the system components is given. This is
followed by a detailed description of the collected dataset, its validation, and publi-
cation is presented. The collected dataset was a big enabler for the research in the
upcoming chapters.

Chapter 6 is about the identification of appliances based on low and high sample
rate electricity data. The low sample rate approach is developed, trained, and evalu-
ated on the DEDDIAG dataset, acting as a dataset baseline. A new high sample rate
appliance identification method is compared to similar approaches and evaluated on
three different datasets. Corrected results for one of the compared algorithms are
presented.

In Chapter 7 the concept of event segmentation is introduced. The importance of
event segmentation and its correct evaluation is explained. A new performance metric
is introduced, overcoming the shortcomings of evaluating events based on single-time
steps instead of as a whole. The commonly used thresholding algorithm is evaluated
for the first time and results on the DEDDIAG dataset are presented. Additionally, a
new segmentation algorithm is presented and compared to the thresholding method.

Chapter 8 presents work on the last step toward computer-aided DR, the pre-
diction of appliance usage. A statistical model is presented and evaluated on two
datasets, including a discussion on how to evaluate the predictions and the short-
comings of previous publications. Its concept is based on the preferred time of the
day and the elapsed time between usages.

The thesis concludes with an outlook in Chapter 9 and a summary in Chapter 10.
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Generally, an equilibrium is a state of balance and in mathematical terms, it is a
solution to a set of equations. In economics, the equilibrium is a method to describe a
state of the market where “the agent (firms and households) maximizes some objective
function (utility, profit) subject to some constraints (budget, technology)” [Cree 90].
In the electricity market, the equilibrium represents the balance of electricity supply
and demand, which is of special interest, as it is a key factor in electric power quality.
Electric power quality is the degree to which the sinusoidal waveform of voltage or
current, as well as the frequency of an electric power supply system, conform to
established norms. The demand on an electric grid is the physical quantity of power
demanded at any given time, and the unit of power is watt (W). This is not to be
confused with the consumed electrical energy per unit of time which has the SI-unit
watt-hours (Wh). Satisfying this demand is the core challenge and main cost factor
for grid providers [Meie 06].

Unlike traditional markets, the energy sector has treated the demand as an un-
controllable value instead of an adjustable variable. As a result, the sector is forced
to create a highly flexible supply to guarantee grid stability [Gell 85]. In power en-
gineering terms, the demand side is usually referred to as load, a fixed value that
cannot be controlled by the supplier [Meie 06]. This means that the customer may,
without any constraints, decide at any given time how much power is demanded and
the supplier will have to meet the demand at any cost.

2.1 Load Balancing
The indicator for an imbalanced system is a deviation from the typical utility fre-
quency of 50 Hz or in some parts of America and Asia 60 Hz. When more electricity is
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fed into the power grid than is demanded, the power grid frequency increases. If not
enough electricity is fed into the power grid in relation to the consumed electricity,
the frequency decreases. The reason for this is that the rotational speed of a genera-
tor is directly linked to the frequency of the generated electricity, meaning that the
rotational speed needs to be kept constant in order to keep the frequency constant.

In a simplified scenario with a single generator, an increase in the active power
drawn from the generator will increase the torque on the generator, thus without any
countermeasures slowing down the rotational speed and lowering the utility frequency.
In order to keep the rotational speed, the generator’s primary energy supply (gas,
water, steam) has to be increased in order to prevent a change in rotational speed
and consequently the frequency of the generated electricity. The same logic applies
if less power is drawn: The torque on the generator will decrease and therefore the
generator’s rotational speed increases resulting in an increase in the frequency of the
generated electricity. [Schw 09]

Controlling the frequency in a network is much more complex compared to a single
generator, and it is the transmission system operator’s obligation to monitor and
control the network frequency. They do this by planning and coordinating the power
plant’s activities in order to keep up with the demand. It requires daily planning of
the electricity demand with the goal to predict the required electricity and adjust the
generation accordingly, as well as putting in place an incident response plan to react
to rapid changes and unplanned incidents.

2.1.1 Daily Demand Planning

The daily electricity demand planning is done on a grid level using a single Standard
Load Profile (SLP). The SLP for German households shown in Fig. 2.1 was defined
in 1999 and is known as H0 SLP [Bitt 99]. It is organized by workdays, Saturdays,
and Sundays as well as by seasons of summer, winter, and transitional seasons. Next
to H0, other SLPs have been defined for other consumer groups such as industrial
(G0-G6) and agricultural (L0-L2).

2.1.2 Incidents Response

Next to the day-to-day demand planning, load balancing is done by responding to
demand fluctuations using a control reserve, which are power plants on standby that
are used to compensate for unforeseen demand increases. This control reserve is
organized into three levels: the primary, secondary, and tertiary control reserve. A
multi-stage plan is implemented to group different countermeasures [Foru 12]. When
the grid frequency falls by >200 mHz, the control reserve is activated in order to
generate the demanded electricity. On deviations >800 mHz, the steps to reduce
the load are starting to take place, by deactivating storage pumps. In case the
frequency falls below 49.0 Hz, multi-step load-shedding activities are activated that
will take large consumers off the grid to further reduce the load. These load-balancing
measures can be seen as an emergency response to rapid frequency drops that can be
caused by a power plant or substation failure.
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Figure 2.1: Standard load profile H0 used in Germany to forecast demand of house-
holds on a grid level. The load profile is organized in workdays, Saturdays, and
Sundays as well as three seasons winter, summer, and transitional seasons. The pro-
file is based on an annual consumption of 1000 kWh.

2.2 Origin of Demand Side Management

As an early solution for breaking this one-sided social contract between supply and
demand, in 1985 Gellings described the term Demand Side Management (DSM).
Gellings described DSM as the task of planning, implementing, and monitoring ac-
tivities that influence the customers’ electricity demand to provide desired changes
in the load shape [Gell 85]. While Gellings very clearly defines DSM to only include
load-shaping actions that are a deliberate incentive-based intervention into the mar-
ket and do not include, e.g., the purchase of more energy-efficient utilities in order
to reduce the general energy demand, the term DSM was redefined over time. In
1996, Gellings revisits the term DSM and concludes that it is mostly used in the
context where consumers are encouraged to “conserve electricity, usually by pur-
chasing super-efficient appliances and devices” [Gell 96]. Nowadays, DSM is usually
understood as a combination of Demand Response (DR) and Energy Efficiency (EE)
which can be understood as short-term and long-term load-shaping techniques. The
United States Federal Energy Regulatory Commission defines DR as: “changes in
electric use by end-use customers in response to changes in the price of electricity
over time, or to give incentive payments designed to induce lower electricity use at
times of high market prices or when grid reliability is jeopardized.” [US D 06]. Figure
2.2 shows the current understanding of DSM, as the main term for all load saving
(EE) and shaping (DR) efforts. DR actions can be seen as having a short-term load
impact, as intended by Gellings, where the energy demand is shifted in time. EE
actions have a long-term impact by reducing the overall load which does not provide
any assistance in short-term demand management but contributes mainly to overall
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Figure 2.2: Demand Side Management term definition.

capacity reduction and long-term environmental goals to reduce the human impact
on the environment.

2.3 Renewable Energy
The International Energy Agency (IEA) expects the worldwide electricity generation
to increase to over 45,000 TWh, a growth of over 70% [IEA 19]. Wind and solar are
expected to be the two main sources, supplying about half of the electricity generated
by 2050.

The transformation of the electrical grid toward renewable energy sources has to
be financed, which in many countries is reflected in the electricity price. In China,
electricity prices are very low, mostly driven by very cheap domestic coal resources
and cross-subsidies of the industry sector. The IEA expects the Chinese electricity
prices for households to increase due to the introduction of CO2 prices. Residential
electricity prices are relatively stable in the United States and the European Union.

As of June 2023, Germany had one of the highest end-user electricity price in
the world, rating at $0.399 per kWh [glob 23]. This is more than double the price of
electricity in the US rating at $0.166 per kWh and over four times of the Chinese,
rating at $0.078 per kWh. The major difference originates in a renewable energy
levy, called EEG-Umlage, which was passed on to German residential consumers.
The renewable energy levy has been eliminated in July 2022 [Germ 22]. Despite the
fact that this should have significantly reduced electricity prices, as of June 2022,
the price had risen to $0.520 per kWh. The Ukraine conflict has resulted in sharp
price increases and significant volatility in energy markets [Adol 22]. Oil, coal, and
gas prices skyrocketed in the aftermath of Russia’s invasion of Ukraine and have
remained volatile ever since. Increased gas prices, in particular, drove up wholesale
electricity prices in the eurozone.

In Germany, the Climate Action Plan 2050 lays out the long-term transformation
to reduce emissions in many sectors, including the electricity sector. The goal is to
reduce greenhouse gas (GHG) emissions 40% by 2020, 55% by 2030, 70% by 2040,
and 80-95% by 2050, which would mean Germany will be mostly GHG-free by 2050
[IEA 20]. For the electric sector, the plan is to increase the share of electricity
gained from renewable sources to 80% by 2050. The energy sources have already
changed significantly from a 15% share in 2008 to 35% in 2018, where particularly
wind is the fastest-growing source. In 2017, the contribution by wind power exceeded
both nuclear and natural gas and is now the second largest source after coal. In
the year 2023, renewable energy sources had already contributed 56.0% to public
electricity generation (see Fig. 2.3) [SMAR 24]. This high share of renewable energy
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Figure 2.3: Net public electricity generation in Germany in 2023 [SMAR 24].

is attributed to favorable wind and sun conditions as well as a decline in industrial
electricity demand as a result of the COVID-19 pandemic.

Increasing renewable energy introduces a new challenge on the supply side as
with some sources, such as wind and solar, the supply side is less controllable. Solar
energy is only available if there is sun; wind turbines will only produce energy if there
is wind. The introduction of these less controllable variables in an already partially
controllable equation exacerbates the unconditional supply-demand equilibrium.

Although the electricity demand is higher in the west and south, Germany has
invested heavily in wind turbines in the northern parts of the country, neglecting the
development of a cross-regional transmission grid to transport the energy to where
it is needed [IEA 20]. In windy times this results in surplus capacity in the north
during windy times to the point where wind turbines need to be taken off the grid. As
an example, the German electricity network operator Mitnetz had to limit its wind
capacity 357 times in 2019 [MITN 20].

With the goal set for 2050, the German public, government, electricity suppliers,
and corporations will all have to be able to mitigate the challenges introduced by
renewable energy sources. One of these challenges is adding the demand side to the
control equation through Demand Response Management (DRM).

2.4 Demand Response
A very simplistic understanding of DR is the process of flattening the load curve.
Therefore, DR describes a set of load-shaping actions that help to reduce the load
during high-demand peak times and increase the load during low-demand off-peak
times. In the literature, six categories of load-shape objectives are described: peak
clipping, valley filling, load shifting, strategic conservation, strategic load growth,
and flexible load shape [Gell 85]. The last three objectives, strategic conservation,
strategic load growth, and flexible load shape mainly involve sales strategies and
define large-scale changes and are not directly related to altering the peak-value
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Peak Clipping Valley Filling Load Shifting

Figure 2.4: The three basic DR objectives as described by [Gell 85].

relation and are not further described here. The three basic DR objectives are shown
in Fig. 2.4.

Peak clipping describes the reduction of peak loads by direct load control and
represents the most basic form of load management. Direct control means that the
operator can directly interrupt a customer’s appliance. From a supplier’s point of
view, this is an efficient way to reduce operating costs by reducing the required peak
capacity.

Valley filling means creating load during off-peak times, e. g., by storing energy
in a different form. A simple example of creating load in a useful manner is pumped-
storage hydroelectricity, where electricity is used to pump water from a lower elevated
reservoir to a higher elevated reservoir. This way the electricity is stored as gravita-
tional potential energy and can later be used during high-demand peak times. Next
to such big electricity storage facilities, the coordinated charging of electric vehicles
(EVs) has the potential for a decentralized valley-filling scenario [Zhan 14]. Studies
conducted in Germany and Canada have revealed that controlled charging of elec-
tric vehicles has a significant impact on the respective countries’ energy systems.
[Stro 22, Dolu 20].

Load Shifting combines peak clipping and valley filling by shifting existing loads
in time so that high-demand peaks fill low-demand valleys. This demand shift can be
accomplished by rescheduling the demand, e. g., using the appliance at a different time
or in industrial terms scheduling the process according to a predicted load demand.
Traditionally load shifting was applied in the form of night storage heaters or hot
water storage.

2.5 Smart Grid
The electric grid is the interconnected network that connects electricity production to
consumption including all enabling services such as transmission and storage. Grids
are a product of continuous adaption to increasing demand as well as changing forces
such as the introduction of renewable energy as well as a wider-distributed genera-
tion. Throughout the world, the growth of an electric grid is influenced by multiple
factors such as economics, politics, and geographic, but in general, the topology did
not undergo any major changes [Farh 10]. The smart grid describes a modernization
and automation of the current grid topology by integrating multiple modern and
intelligent components [Gutw 09]. The transformation of the current state can be
described as a pyramid as shown in Fig. 2.5. The smart grid is a combination of
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Figure 2.5: Smart grid pyramid showing the Asset Management as the foundation
for Smart Grids which enables future applications such as DR [Gutw 09].

basic IT and communication infrastructure, as well as circuit topology and funda-
mental applications such as smart meters, data management, and various automation
[Gutw 09].

The smart grid is the foundation that enables applications such as DR by defining
the required components that provide the information and infrastructure for modern
Distributed Energy Resources (DER).

The European Union has started a transformation of the European grid as part
of the Third Energy Package in the directive 2009/72/EC [EU D 19]. It defines nu-
merous goals in order to promote the internal electricity market and energy efficiency
by “developing innovative pricing formulas, or introducing intelligent metering sys-
tems or smart grid”. Regarding smart grid, all EU member states are encouraged to
modernize their distribution network through smart grids. The smart grid “should be
built in a way that encourages decentralized generation and energy efficient”. As a re-
sult of this directive, the goal in Germany is to install a country-wide smart-metering
infrastructure by 2032 (§29 Abs. 3 S.1 MsbG).

2.6 Dynamic Electricity Pricing
The standard model for retail electricity pricing is a flat fixed price for every kWh
consumed. The price is fixed throughout the year and may only be altered annually.
This fixed price model manifests the one-sided responsibility of load balancing as it
does not provide any incentive to the customer to assist with DSM objectives. An
early form of dynamic pricing is storage heating tariffs that were introduced as a
means to fill the load valley at night, creating the necessary minimum load for power
stations that otherwise need to be shut down. The different loads were metered by
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installing separate meters in order to attribute the usage. While storage heating
using electricity is no longer widespread, the introduction of electric vehicles, which
may be charged overnight, might introduce a new valley-filling demand at night.

Dynamic electricity pricing models can be implemented in different forms, where
some require modern IT infrastructure in the form of smart meters. In general, there
are three types of dynamic tariffs: Real Time Pricing (RTP), Time of Use (TOU),
and Critical Peak Pricing (CPP) [Eid 16]. In all scenarios where the price model may
change throughout the year, the installation of metering infrastructure capable of
monitoring the rate-specific periods is required.

It must be noted that not all components of the retail electricity price are flexible.
A retail electricity price is made up of costs of power generation, grid fees, electricity
tax, Value added Tax (VAT), concession fees, and, in some countries, an additional
levy. Some components might be charged per unit of energy and therefore are not
flexible. A report on the German electricity market by the International Energy
Agency in 2020 concludes that this limits the pricing model design that creates in-
centives for customer behavior changes [IEA 20]. In Germany dynamic pricing is, in
the year 2021, still very uncommon and only a few providers exist such as Awattar
(https://www.awattar.de).

Real Time Pricing (RTP) is the most dynamic price model where the price may
change within short time periods such as every 15min or 1h. This price might be
dependent on the day-ahead price which in Europe is traded on the European Power
Exchange (EPEX) Spot Market (https://www.epexspot.com). In the case that the
price is dependent on the day-ahead market, the customer has a price certainty of
24 hours and is notified on a day-ahead basis. RTP comes with high uncertainty for
customers and in order to utilize the potential cost-saving aspect the customers need
to check rates frequently or are faced with costs that are difficult to plan.

Time of Use (TOU) rates have a fixed electricity price for certain time blocks,
usually defined for a 24-hour day. The rate is directly related to the average opera-
tional cost during those periods [US D 06]. An example is night storage tariffs where
off-peak times are cheaper than high-peak times.

Critical Peak Pricing (CPP) is a hybrid of RTP and TOU. While the basic
concept of time periods is similar to TOU, the actual rate is not fixed. It allows the
utility to increase the price on short notice for certain days or periods within a year
[US D 06]. In case this incentive plays out, the tariff contributes to peak clipping,
thus lowering the overall operational cost of the network as well as contributing to
network reliability.

2.7 Customer Acceptance
The effectiveness of all domestic DR programs depend heavily on the end-user’s will-
ingness to participate. A UK study analyzed the willingness to participate in dynamic
electricity tariffs and analyzed their reaction to unpredictable price changes [Ozak 18].

https://www.awattar.de
https://www.epexspot.com
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Figure 2.6: Technical infrastructure required to enable applications such as DR.

After the one-year trial period, the study concludes that the “trial participants were
willing to adapt their practices to the rate fluctuations as long as the tariff did not
rule their lives and ruin their quality of life”. Further, the study concludes that
real-time information on high energy usage might assist people to modify their own
behavior since the study found that during a normal busy day, people need to be
reminded of tariff changes through a simple interface. Real-time insights into elec-
tricity usage would also greatly assist in identifying high-load appliances including
a “visual warning to let people know that what they are doing is consuming large
amounts of electricity when the price is high”. Other studies also suggest that RTP
models, particularly, require a complexity reduction to be accepted by the end-user
[Quan 05].

2.8 Demand Response Infrastructure
The technical infrastructure required to enable applications such as DR in a dynamic
electricity prices scenario is shown in Fig. 2.6. On the provider side, it contains a
headend system responsible for collecting electricity consumption data, relevant for
billing purposes. In combination with a billing component and a tariff server, it pro-
vides the general capabilities for dynamic electricity price models such as RTP. On
the customer side, a smart meter collects and transmits the electricity consumption.
A component called the home automation gateway is responsible to combine informa-
tion from the smart meter and tariff server. It provides information to the customer
and may also directly operates actuators and switches. How such functionality can
be provided is discussed in Chapter 4.

From a provider’s point of view, the infrastructure serves as a platform to provide
energy services. Utility services belong to basic needs and competition for physical
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access is unwanted. Therefore, in many countries including Germany, utility services
such as metering, transmission, and remuneration of meter readings are highly regu-
lated. In Germany, the operation of metering points is for privacy reasons separated
from the distribution and sale of electric energy. This separation combined with the
already many regulations in terms of network charges render offering new services via
traditional market roles unprofitable [Goel 18].

Since providing applications beyond pure electricity supply usually requires hard-
ware on the customer, the development of such applications depends on the devel-
opment of this hardware. While the metering infrastructure is highly regulated, the
hardware providing services such as a home automation gateway is not. Since this is
unregulated, it allows nontraditional actors to enter the market and offer unregulated
services. By using existing communication technology such as the customer’s local
network and internet, new services could be provided using unregulated hardware
and communication. This lowers the entry threshold for Internet of Things (IoT) ap-
plications, allowing nontraditional actors to enter the market. This also means that
the high data privacy standards introduced for electricity providers do not apply to
such actors. For example, the lack of access to high sample rate energy consumption
readings could be overcome by installing additional, unregulated meters.

The chosen infrastructure design and regulations heavily influence the range of
services offered to customers, market access, and the cost of delivering public ser-
vices. The currently rolled-out infrastructure has with all its regulations a high entry
threshold, while at the same time, new services based on IoT hardware that operates
within the customer’s local network and have access to the internet have a very low
threshold. This increases the risk, that a completely unregulated market is created
next to infrastructure rolled out by utility providers.
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Every meaningful action necessitates making decisions based on its surroundings.
Creatures perceive their surroundings by observing, evaluating, and interpreting their
sensory experiences [Niem 03]. In order for a computer to take meaningful actions
it must possess knowledge of the action domain, thus perceiving its environment.
Searching for patterns in the observed using computer algorithms is known as pattern
recognition [Bish 06]. Sensory impressions only provide a subset of an environment,
thus the actions we take are only based on a subset of possible impressions. Meaning-
ful decisions start with perception, thus choosing the sensors defines the subset of the
perceivable available to take an action and therefore is a significant factor defining
the subsequent steps [Niem 03].

3.1 Machine Learning
The main goal of machine learning is to model the relationship between input and
output. It focuses on developing algorithms and models that allow computers to
learn from data rather than being explicitly programmed. This entails automatically
detecting patterns between the source and the target. As a result, the terms Machine
Learning and Pattern Recognition can be used interchangeably. Figure 3.1 shows a
standard pipeline that allows a computer to perceive its environment and search for
patterns [Niem 03].

Starting with the data provided by the used sensors, in a pre-processing step,
the data are transformed to simplify feature extraction. The main purpose of pre-
processing is to increase the data quality aiding the subsequent steps. From the
pre-processed data, problem-relevant features are extracted, which results in feature
vectors used by the classification algorithm. The classification itself is also called
inference. Using the trained algorithm, the best-fitting class is determined. Model
training is based on the assumption that recordings with similar characteristics belong

17
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Input
Recording

Data
Collection

Data
Preprocessing

Feature
Extraction Classification Class / Label

TrainSample
Training phase

Figure 3.1: Pattern recognition pipeline as described by [Niem 03]. The top part
begins with input, followed by a series of processing steps. Classification uses a
trained model to predict the most likely output. A class can refer to any type of
output, whether it be one-dimensional or multi-dimensional.

to the same class. Section 4.2.2 provides an overview of the features commonly used
when working with electricity data. Model performance, and thus output correctness,
is determined by feature expressiveness and model accuracy. This machine learning
pipeline applies to a wide range of classification problems and goes beyond simple
category assignments.

Depending on the application and the availability of input data, either supervised
or unsupervised machine learning techniques are used. Supervised machine learning
methods require labeled input data to learn the relationship between data and its
correct label. The algorithm in supervised learning is trained using a set of example-
label pairs known as the training set. The goal is to train the algorithm to predict
the label for new, previously unseen data. Unsupervised learning, on the other hand,
seeks previously unknown patterns and rules in unlabeled data. The algorithms are
tested using separate data, and their accuracy is measured based on their ability to
predict the correct labels for these new data [Bish 06]. The performance of machine
learning pipelines is measured using various evaluation metrics, which are further
described in Section 3.5.

3.2 Classification
Electricity data points and features are recorded chronologically, rendering most De-
mand Response (DR) related machine learning tasks a time-series classification prob-
lem. Time-series data has a numerical and continuous nature, and the temporal
relation between the data points is of the essence. A time-series classifier is a func-
tion h that maps the sequence x to classes:

m = h(x). (3.1)

The function h is an element of some search space H of possible functions called
the hypothesis space and x is an element of some feature space X . For multi-class
problems like appliance type recognition, we use m ∈ M = {1, 2, . . . , M}, (with M
being the number of classes), possibly extended by class label 0 for rejection (i. e.,
the classifier is allowed to report “I don’t know”, as opposed to forcing a decision for
one of the appliances). Note that for binary classification, M is typically chosen as
{−1, +1} (negative and positive class) or as {0, 1}, whichever is more suitable (often
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depending on the classifier used). Determining whether a device is ON or OFF, as
described in Chapter 7 can be formulated as a binary classification problem.

In supervised learning, h is learned from a set S of example-label pairs called the
training set:

S = {(x1, m1), . . . , (xN , mN)} . (3.2)

It is assumed that the set of training samples is representative of the problem, provid-
ing enough information about the perceived environment and that the elements are
independent and identically distributed, i. e., one sample does not affect another one,
and all samples are produced by the same underlying process. We, therefore, seek
a function h : X → M that best fits our training set S. This best fit is formalized
by defining a loss function L, a single overall measure of loss obtained by choosing a
specific classifier h. Thus, the goal of the learning process is to minimize total loss
for our training set S. A classification algorithm in general specifies how the function
h may look like, how the search space H is searched, and what loss function L is to
be used.

3.3 Classification in Demand Response

A wide range of different algorithms have been established over the years and have
also been applied to demand response-related tasks. Figure 3.2 provides an overview
of appliance identification (see Section 6) and event segmentation (see Section 7)
approaches. The approaches differ in the data acquisition, pre-processing as well as
classification method used, and evaluation of the approach. The categorization is not
easy, as the established terminology for appliance identification and event segmen-
tation is not well-defined. The application identification has been performed using
a wide range of different classification algorithms such as Hidden Markov Model
(HMM), Naïve Bayes (NB), Gaussian Mixture Model (GMM), Support Vector Ma-
chine (SVM), Neural Network (NN), k-Nearest-Neighbor (kNN), and Dynamic Time
Warping (DTW). Event detection, being the less researched topic, was commonly
only performed using kNN or SVM. In Chapter 6 two appliance identification ap-
proaches are presented based on kNN (see Section 6.3) and NN (see Section 6.4).
The switching event segmentation approaches presented in Chapter 7 use a simple
lower bound threshold approach (see Section 7.5) as well as a SVM based classification
approach (see Section 7.6).

3.4 Classification Algorithms

The following describes the supervised classification algorithms used within this work.
In supervised classification, an algorithm is trained on a labeled dataset, in which
each sample is connected with a known class or label and is then used to predict the
class of new, unseen data.
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Task

Appliance
Identification

[Srin 06, Pate 07, Zaid 10, Jian 12,
Rein 12, Marc 11, Ridi 13, Lai 13,

Figu 11, Kato 09, Jana 13, Kim 11,
De B 18b, Faus 20, Faus 21, Wenn 21a]

Edge Event Detection

[Pate 07, Fitt 10,
Kahl 19, Berg 10, Giri 13]

Switching Event Detection

[Wenn 19b, Kahl 19,
Jian 13, Fari 99, Ande 12a,

Berg 11, Ande 12b]

Sensors

Mains

[Kolt 11,
Ande 12b,
Weis 12]

Circuit-level

[Kolt 11,
Ande 12b]

Smart Outlet

[Sait 10]

Smart Plug

[Kim 11, Lee 13, Kolt 11,
Pate 07, Jian 12, Jana 13,

De B 18b, Ridi 13, Wenn 19b]

Environment

[Ande 12b,
Scho 10]

Sampling
Frequency

< 1Hz

[Kim 11,
Zaid 10,
Ridi 13]

1-100Hz

[Weis 12, Ande 12b,
Wenn 19b, Jian 13]

100Hz-100kHz

[Sait 10, Ande 12b, Kahl 19,
Berg 10, Giri 13, Jian 13, Kim 19,

Faus 20, Faus 21, Kolt 11, De B 18b]

>100kHz

[Pate 07]

Data

Power

[Rein 12, Ridi 13,
Weis 12, Zaid 10,

Wenn 19b,
Figu 11, Giri 13]

Voltage

[Kato 09, Meeh 12,
Weis 12, Kahl 19,
Berg 10, Faus 20,
Faus 21, Kolt 11,

De B 18b, Wenn 21a]

Current

[Kato 09, Meeh 12,
Weis 12, Kahl 19,
Berg 10, Lai 13,

Jana 13, Faus 20,
Faus 21, Kolt 11,

De B 18b, Wenn 21a]

Environment

[Ande 12b,
Scho 10]

Pre-
Processing

Discrete
Wavelet

Transforma-
tion (DWT)

[Wenn 19b]

Fourier Trans-
formation (FFT)

[Pate 07,
Meeh 12, Srin 06,
Jana 13, Kim 19]

Median

[Weis 12]

Gaussian
Kernel

[Weis 12]

Kalman

[Hail 96]

Recurrence

[Faus 20,
Faus 21,

Wenn 21a]

Classification
Method

HMM

[Kim 11,
Zaid 10,
Kolt 11,

De B 18b]

NB

[Rein 12]

GMM

[Ridi 13, Lai 13]

SVM

[Lai 13, Pate 07,
Srin 06, Jian 12,

Kato 09,
Wenn 19b,

Kahl 19,
Jian 13]

NN

[Srin 06,
Kim 19,
Jana 13,
Faus 20,
Faus 21,

Wenn 21a]

kNN

[Fitt 10, Giri 13,
Kahl 19,
Berg 10,
Figu 11,
Ridi 13,
Weis 12,

Wenn 21b]

DTW

[Zaid 10]

Evaluation
Measure

Accuracy

[Pate 07, Srin 06, Jian 12,
Ridi 13, Lai 13, Jian 13,

Kato 09, Jana 13,
Kim 19, Kolt 11, Rein 12]

Precision

[Beck 14,
Lee 10, Pere 15,

Rein 12]

Recall

[Beck 14,
Lee 10, Pere 15,

Rein 12]

F1

[Beck 14, Lee 10, Kim 11,
Berg 11, Wenn 19b, Kahl 19,

Berg 10, Figu 11, Kim 19,
Faus 20, Faus 21, De B 18b,

Wenn 21b, Wenn 21a]

Assigned
Energy

[Patt 12,
John 13]

Figure 3.2: Overview of appliance identification and event segmentation approaches.
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k=3
k=5

Class A
Class B
?

Figure 3.3: Classification example of a new feature vector (black dot) using the
k nearest neighbor (kNN) method for different k. If three neighbors are decisive
(k = 3), the new point is classified as class B. If five neighbors are decisive (k = 5),
the new point is classified as class A.

3.4.1 k-Nearest-Neighbor Method
The development of the kNN classification method goes back to E. Fix, and J. Hodges
[Fix 51]. It is a simple, non-parametric, supervised classification method suited for
discrimination problems when reliable parametric estimates of probability densities
are unknown or hard to determine. The kNN technique has been widely used in DR
tasks [Fitt 10, Giri 13, Kahl 19, Berg 10, Figu 11, Ridi 13, Weis 12, Wenn 21b] (see Fig-
ure 3.2). Let’s assume a training set of observations/samples Ot = {x1, x2, . . . , xN}
and their corresponding class labels Ct = {y1, y2, . . . , yN}. Each observed vector
Xn is composed of several observed features. The classifier provides an answer to
a discrimination problem by calculating the distance to a specific observation xs,
with unknown class label ys, by measuring the distance of xs to the observations in
Ot. The classification rule is, to assign xs the majority class label of its k nearest
neighbors in Ot.

A general distance metric definition describing the distance between two observa-
tions xi and xj is known as the Minkowski distance and defined as:

D(xi, xj) =
 Q∑

q=1
|xiq − xjq|p

 1
p

, (3.3)

where Q is the feature vector size and p ≥ 1 determines the actual distance metrics
used. The typical values for p are 1 and 2, where p = 1 corresponds to the Manhattan
distance, and p = 2 corresponds to the Euclidean distance. The Euclidean distance
is the most commonly used. Using (3.3) with p = 2, results in:

D(xi, xj) =

√√√√√ Q∑
q=1

|xiq − xjq|2 . (3.4)

Figure 3.3 illustrates the kNN classification based on the Euclidean distance using
three (k = 3) or five (k = 5) neighbors. It is convenient to choose k to be odd to avoid
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ties. Since the decision process is based on the training samples at prediction time,
the training phase includes storing the training observations. Thus, the training set
size does not really influence the training time but the prediction time.

3.4.2 Support Vector Machine
SVM is a supervised learning method used for classification and regression analysis;
however, only the former is relevant here. It tries to find a boundary in a high-
dimensional space that separates data points that belong to different classes [Cort 95].
The border is designed to maximize the margin between the closest points from
distinct classes, which are referred to as support vectors. Therefore, memorizing all
training set observations is unnecessary as only a limited number of observations are
crucial. Even if the training set is limited in size or contains outliers, SVMs still has
a decent generalization. This is one of the advantages of using SVMs. Non-linear
data can be handled by mapping it into a higher-dimensional space and locating
the boundary there. The SVM technique has been widely used in DR tasks [Lai 13,
Pate 07, Srin 06, Jian 12, Kato 09, Wenn 19b, Kahl 19, Jian 13] (see Figure 3.2).

Figure 3.4 shows an example of a maximum margin hyperplane or decision bound-
ary that separates two classes. As the example shows, no sample from either class is
within the margin on either side of the separation hyperplane. This is known as hard
margin SVM. Suppose an optimal solution or error-free separation of the datasets is
not attainable. In that case, this restriction can be relaxed to allow samples to lie
inside the margin, known as soft margin SVM. The data points on the dashed lines
act as support vectors.

A linear model for a binary classification problem can be expressed as:

y(xi) = wT xi + b , (3.5)

where w is the weight vector that defines the separating hyperplane, xi; the data sam-
ples with corresponding class labels y(xi) = yi ∈ {−1, 1}, and b the bias component.
Two parallel hyperplanes can be chosen that maximally divide the two classes:

wT xi + b ≥ 1, for yi = 1 (3.6)

for the first class denoted as yi = 1, and

wT xi + b ≤ −1, for yi = −1 (3.7)

for the second class denoted as yi = −1. This can be expressed as a set of inequalities:

yi(wT xi + b) ≥ 1 i = 1, 2, . . . , N (3.8)

where N is the number of training samples and xi is the ith training sample. The
region encompassed by these two hyperplanes defined in (3.6) and (3.7) is referred to
as the margin. The maximum-margin hyperplane is the hyperplane that lies at their
midpoint:

wT x + b = 0 . (3.9)
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Figure 3.4: Example of data consisting of two classes that have been separated
using SVM with the maximum margin separation hyperplane. The points on the
dashed lines act as support vectors.

The geometric distance between these two hyperplanes (3.6) and (3.7) is 2
||w|| ,

hence to maximize the distance between the planes, we must minimize ||w||. Mini-
mizing ||w|| within the limitations of (3.8) yields the best normal vector for separating
the feature space.

The Lagrange multiplier method can be utilized to solve this optimization prob-
lem, which will then result in the dual formulation of the SVM optimization problem.
The Lagrangian is constructed as [Bish 06]:

L(w, b, α) = 1
2 ||w||2 −

N∑
i=1

αi{yi(wT xi + b) − 1} , (3.10)

where α = (α1, . . . , αN)T . Setting the derivatives of L(w, b, α) with respect to w
and b to zero, the following two conditions are obtained:

w =
N∑

i=1
αiyixi , (3.11)

0 =
N∑

i=1
αiyi . (3.12)

Eliminating w, b from (3.10) by setting w and b’s using these conditions yields
the dual representation of the maximum margin problem:

L̃(α) =
N∑

i=1
αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi, xj) , (3.13)

with respect to the constraints:

αi ≥ 0 , i = 1, . . . , N, (3.14)

N∑
i=1

αiyi = 0 . (3.15)
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The kernel function k is in the case of a linear kernel given by k(x, x′) = xT x′. A
polynomial kernel for example can be formulated by k(x, x′) = (xT x′ + c)d. These
kernel functions offer exceptional performance for data points that cannot be sep-
arated linearly, which is one of the primary reasons why SVMs have gained such
widespread adoption. Since the decision function only depends on the inner product
of the vectors in the feature space, it suffices to evaluate the kernel function instead
of explicitly projecting it into the feature space.

To use the trained model to categorize additional data points, we evaluate the
sign of the function y(x) defined in (3.5). This can be represented in terms of the
parameters α and the kernel function k by substituting for w using (3.11):

y(x) =
N∑

i=1
αiyik(x, xi) + b . (3.16)

The presented constrained optimization problem meets the Karush-Kuhn-Tucker re-
quirements, which necessitate the occurrence of the following properties:

αi ≥ 0 , (3.17)

yi(wT x + b) − 1 ≥ 0 , (3.18)
αi{yi(wT x + b) − 1} = 0 . (3.19)

It can be deduced that samples either satisfy the condition αi = 0 or yi(wT x+b) = 1.
Every data point for which αi = 0 will not affect the sum in (3.16) and is therefore
irrelevant for any prediction. The remaining data points satisfying yi(wT x + b) = 1
are the support vectors and lie on the maximum margin hyperplane.

3.4.3 Deep Learning
Researchers like Warren McCulloch and Walter Pitts [McCu 43] in the 1940s and
1950s claimed that the human brain’s functioning could be described as a simple
network of binary neurons, laying the groundwork for the development of modern ar-
tificial NNs [Bish 06]. When fast backpropagation algorithms were developed in the
late 1980s and early 1990s, it became possible to train multi-layer NNs [Rume 86].
During this period, NNs were put to use in many contexts, including but not limited
to pattern recognition, image and speech processing, and control systems. Unfor-
tunately, early NNs’ performance was constrained by the size of available computa-
tional resources and training datasets. While the topic of deep learning has been
around since the 1960s [Widr 90], it wasn’t until the late 2000s and early 2010s that
breakthrough results were produced on a variety of tasks using deep learning NNs,
sparking increased interest in the area. Since then, deep learning has expanded into
a major field of study with many practical applications in industry. NNs have been
widely used in DR tasks [Srin 06, Kim 19, Jana 13, Faus 20, Faus 21, Wenn 21a] (see
Figure 3.2). Unlike other areas where large amounts of data are easily available,
utilizing NNs in DR task is sometimes challenging as vast amounts of meaningful
training data are not easily available. This is further discussed in Section 4.1.3.

Traditional machine learning methods, such as SVM and kNN are typically based
on simple mathematical models and require manual feature engineering to extract
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useful information from the data. Compared to deep learning models, they often
have a shallower architecture and are less capable of handling vast and complicated
datasets. In contrast, deep learning models have a more complex architecture with
numerous hidden layers that can automatically learn and extract features from raw
data. This enables them to manage huge and complicated datasets and model non-
linear solutions. In addition, deep learning models can improve continually through
training, but older methods have a limited capability for improvement without human
involvement.

Feed-forward Neural Networks

The foundation of deep learning models is feed-forward neural networks or Multilayer
Perceptrons (MLPs). A computational perceptron, also called a neuron, is the small-
est component of an MLP, which is composed of many neurons stacked in layers.
As illustrated in Figure 3.5(a), an input layer, one or more hidden layers, and an
output layer make up their structure. The input layer takes the input data, while
the output layer generates the network’s predictions. Complex relationships between
input and output data are modeled using the hidden layers. Since all neurons in one
layer are typically connected to all neurons in the following layer, these layers are
also referred to as fully connected (FC). Each layer provides a function f(x) that
processes the output of the previous layer. Together they forms a chain of functions
f(x) = f (3)(f (2)(f (1)(x))), where f (1) is the input layer, f (2) the hidden layer, and
f (3) the output layer [Good 16]. The term deep in deep learning refers to the overall
length of the chain, incorporating different aspects of the classification pipeline such
as feature extraction. As depicted in Figure 3.5(b), a single perceptron consists of
weights w and bias b that process the input features, apply an activation function
h, and generate the output aj. Activation functions introduce non-linearity to the
neuron’s output. The activation function determines whether or not a neuron should
be activated, i.e., whether or not its output should be forwarded to the next network
layer. Some of the commonly used activation functions include sigmoid, hyperbolic
tangent (tanh), Rectified Linear Unit (ReLU), and variants of ReLU such as leaky
ReLU.

An MLP discovers the model parameters of a function f such that the mapping of
input x to output y is optimally approximated by y = f(x, θ) [Good 16]. The model
θ contains all trainable parameters. In an MLP, these parameters are the weights w
and biases b of all neurons. For a single neuron j, this is described as:

zj = wT
j x + bj . (3.20)

Applying an activation function h to zj, the output aj of a layer’s neurons 1, . . . , M
can be described as:

aj = h(wT
j x + bj) . (3.21)

In classification problems, the last layer must produce an output indicating class
membership y. For binary classification tasks, this can be achieved by using the
logistic sigmoid activation function:

y = 1
1 + exp(−z) , (3.22)
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Figure 3.5: An MLP as shown in a) comprises an input, hidden, and output layer.
The input layer receives the input data and passes it through the network, where
each hidden layer processes and passes the data until it reaches the output layer.
Each layer’s associated perceptrons, as shown in b), employ weights to determine
the strength of their connections and apply activation functions to produce the final
output predictions.

so that 0 ≤ y ≤ 1. For non-binary classification problems with K > 2 classes, a
softmax activation function is used. A softmax activation function represents the
probability distribution over a discrete variable and is defined as [Bish 06]:

p(yk|x) = exp(zi)∑K
j=1 exp(zj)

, (3.23)

It applies the standard exponential function to each element zi of the input vector z
and normalizes these values by dividing by the sum of all these exponentials. This
normalization ensures that the sum of the components of the output vector is 1.

Training of Neural Networks

The weights and biases are learned using a supervised learning algorithm such as
gradient descent, which updates the parameters based on the difference between the
predicted output, and the actual output [Good 16]. This difference between predicted
and actual output is expressed as a cost function C(θ) to find the optimal param-
eters. Initially, all network parameters θ, such as weights and biases, are usually
initialized randomly and optimized by minimizing this cost function. The cost func-
tion is employed as an indirect performance metric, expecting to improve the actual
performance metric used to evaluate the problem solution. These actual performance
metrics are further explained in Section 3.5.

The cost function C(θ) can be expressed as an average of the per-example loss
function L:

C(θ) = E(x,y)∼p̂data
L(f(x, θ), y) , (3.24)

where the input is x, p̂data is the empirical distribution, f(x, θ) the network’s pre-
dicted output, and y the expected class membership. The typical loss function for
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classification problems is the cross-entropy between the training data and the model
distribution:

L = −
K∑

k=1
yklog(ak) , (3.25)

C(θ) = −E(x,y)∼p̂data
log(f(x, θ), y) . (3.26)

Typically, the answer is obtained by evaluating the gradient of the cost function us-
ing mini-batches. The gradient of the cost function must be sufficiently large and
predictable to serve as a solid guide for the learning process, which is a repeating
theme in neural network design. Mini-batching is a technique where the model is
only trained on smaller subsets of data, called batches, instead of the entire dataset
at once. The training dataset is divided into batches, and the model is trained on
each batch, updating the model’s parameters after each batch. This approach allows
for more efficient use of computational resources and faster convergence compared to
training on the entire dataset at once. Additionally, mini-batching can improve gener-
alization performance and avoid overfitting by introducing randomness and reducing
the model’s sensitivity to individual examples in the dataset. Using the stochastic
gradient descent (SGD) algorithm, the gradient is computed as [Good 16]:

∇C(θt) = 1
Nb

∇θt

Nb∑
i=1

L(f(xi, θt), y) , (3.27)

where Nb is the size of the mini-batch. Utilizing the cost function C, the parameters
θ are iteratively adjusted using:

θt+1 = θt − η∇C(θt) , (3.28)
guiding the learning process using the learning rate η. It is possible to set the learning
rate through trial and error, but observing learning curves that display the objective
function as a function of time is commonly advised. This is more of an art than a
science. The backpropagation algorithm is used to compute gradients relative to the
weights. Initially introduced by Rumelhart et al. [Rume 86], the backpropagation
approach updates the weight of each neuron based on the amount of error it has
given to the network, as assessed by the loss function computed in the last layer.

Therefore, the training technique consists of two steps: a forward pass, also called
forward propagation, and a backward pass, also called backpropagation. The forward
pass of the network predicts the class membership y by computing (3.21) at each
layer. In the final layer, this means applying an activation function such as (3.22)
or (3.23). The backward pass computes the gradient of the activation functions with
respect to the network’s weights, beginning at the output layer and working its way
back to the input layer. The loss Ln at the last layer n depends on the weights
wji via the summed input zj at layer j [Bish 06]. According to the chain rule for
partial derivatives, the derivative of a composite function equals the product of the
derivatives of the individual functions that comprise the composite function. This
means that the loss function’s derivative with respect to a layer’s weights can be
written as the product of the derivative of that layer’s output with respect to its
weights and the derivative of the loss function with respect to that layer’s output:

∂L

∂wji

= ∂zj

∂wji

∂L

∂zj

. (3.29)
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Figure 3.6: Convolutional operation used in CNNs, where a filter traverses the input
data and calculates the dot product between the filter weights and the corresponding
input value.

The same procedure is then performed for the network’s hidden layers, with the
gradient being calculated depending on the previous layer’s error and the current
layer’s weights. Using this gradient, the weights of the hidden layers are then updated.

Convolutional Neural Networks

On problems where spacial features are relevant, Convolutional Neural Networks
(CNNs) present a powerful type of NNs based on the convolution operation. A CNN’s
foundation is a convolutional layer, which applies a sequence of filters or kernels to
the input data. Convolutional layers became of interest when applied to handwriting
problems in 1989, enabling a single network to learn the entire recognition operation
[LeCu 89]. For the convolution, each filter traverses the input data and calculates
the dot product between the filter weights and the corresponding input values as
depicted in Figure 3.6. The output is a feature map highlighting particular aspects
of the original data. Multiple CNN layers allow the network to extract increasingly
complex and abstract features from the input data. The first layer learns simple
features like edges, curves, and blobs, while subsequent layers learn more complex
features that are composites of the simpler features learned earlier. The network can
also learn hierarchical representations of the input data, with each layer building on
the features learned in the previous layer. Using multiple layers, CNNs are capable
of capturing local and global information.

Convolutional layers have three distinguishing characteristics [Good 16]. (1) Sparse
interactions, connectivity, or weights result from the kernel being much smaller than
the input. Small kernels recognize edges and other small, representative features.
As a result, fewer parameters must be saved, reducing memory usage, increasing ef-
ficiency, and decreasing the number of operations required. (2) Parameter sharing
re-uses the kernel and weights across input data. On the other hand, fully connected
layers have distinct weights for each input. Parameter sharing reduces memory usage
even further and prevents overfitting. (3) Equivariance to translation, meaning that
the output changes the same way as the input. As a result, moving the input in
one direction results in a corresponding shift in the activation map, which is useful
because early layers may have edges or other basic features at different locations.
The convolution operation can be implemented using matrix operations, improving
performance through sparsity and parameter sharing while maintaining gradient flow
via backpropagation for fully connected layers.
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A common addition to convolutional layers is pooling layers, which are often
applied after nonlinear activation functions to minimize the size of the activation
maps. Pooling is employed by almost all convolutional networks [Good 16]. It is
achieved by applying a mathematical operation, such as maximum or average pooling,
to non-overlapping subregions of the input data. Max pooling, for instance, uses
the maximum value of each subregion as the output. This reduces the size of the
feature maps, rendering them more manageable and computationally efficient. The
subregion’s size can be fixed with a kernel size of, for example, 2 × 2, or in the case
of adaptive pooling; the size is defined based on the desired output size. In the case
of a 2 × 2 kernel, the dimension of the feature map is reduced by one-fourth. The
pooling layer has numerous benefits. First, it aids in the management of overfitting,
which occurs when the model memorizes the training data rather than learning to
generalize from it. The pooling layer minimizes the number of network parameters
by decreasing the feature maps’ size. Second, it enhances translation invariance, or
the model’s capacity to recognize shapes in various locations or orientations. Pooling
achieves this by increasing the model’s sensitivity to modest changes in input.

3.5 Performance Metrics

Measuring the effectiveness of an algorithm requires a performance metric. A metric
provides two functions, a measure of the effectiveness of the tested approach and
the basis for comparison to other approaches. In general, two kinds of metrics are
commonly used: binary-attribute and value-based. Binary-attribute-based metrics
compare the binary output of a classifier by testing whether the output is correct or
incorrect. The binary states are usually called positive or negative. Binary-attribute-
based metrics are the common choice for classification problems such as identification
and edge detection. Value-based metrics are a measure of the difference in value
between ground truth and prediction. For disaggregation tasks, it is common to
express the error as the distance between the disaggregation load curve of an appliance
and the ground truth.

Choosing a meaningful performance metric is significant to the evaluation as dif-
ferent metrics express different characteristics. Several authors in various fields have
addressed the problem of selecting an appropriate metric before [Cook 07, Hand 09,
Powe 11a, Mako 15].

The basis for binary-attribute metrics are the number of true positives (TP),
true negatives (TN), false positives (FP), false negatives (FN). TP means that the
positive class was correctly classified as positive. TN means that the negative class
was correctly classified as negative. FP and FN are the numbers of erroneously
classified samples, either falsely as positive or negative. These numbers are the result
of summarizing the predictions of a classifier and form a 2 × 2 contingency table
[Powe 11b]. Based on this contingency table, multiple single-value metrics can be
described.



30 Chapter 3. Machine Learning and Classification

3.5.1 Accuracy
Accuracy (ACC) expresses the ratio of correct predictions to total predictions:

ACC = correct predictions
total predictions = TP + TN

TP + TN + FP + FN . (3.30)

The main issue with this commonly used metric is known as the accuracy paradox
[Zhu 07, Valv 14]. When the classes (positive and negative) are imbalanced, as is the
case for rare events, a high ACC is easily obtained by always predicting the most
frequent class. This means, for imbalanced tasks, ACC is not meaningful. However,
rare events are very common in appliance identification or segmentation, and with
some exceptions, the default case in appliance usage prediction. For instance, consider
a dishwasher: the appliance is commonly used regularly, say every other day, and it
takes about 2h to complete its cycle. Thus, the dishwasher is switched off 96% of the
total time. Even in scenarios when a dishwasher is used twice as often, i. e., every
day, it is still switched off 92% of the time. Considering a classifier that predicts
a dishwasher to be ON or OFF, a high accuracy will be obtained by using a hard-
coded predictor, that always predicts the appliance as being switched off. Therefore,
publications that present an evaluation based on accuracy such as [Pate 07, Srin 06,
Jian 12, Ridi 13, Lai 13, Jian 13, Kato 09, Jana 13, Kim 19, Kolt 11, Rein 12] must be
treated with caution, as the evaluation may suffer from the accuracy paradox. Despite
all this, especially in combination with other performance metrics, accuracy does give
insight into an important characteristic.

3.5.2 Precision and Recall
Precision and recall describe the relevance of the classification result. Precision is
the ratio of correct positive predictions to total positive predictions. It describes the
validity or value of the positive return predictions and is therefore also called positive
predictive value (PPV).

precision = TP
TP + FP . (3.31)

Recall on the other hand is the ratio of correct positive predictions to the total number
of positive samples. Thus it describes the completeness of the prediction. It is also
known as true positive rate (TPR) or sensitivity.

recall = TP
TP + FN . (3.32)

3.5.3 F1-score
The F1-score is defined as the harmonic mean of precision and recall. It is a very
common metric for classification problems. The metric is calculated as:

F1 = 2 · precision · recall
precision + recall = TP

TP + 0.5(FP − FN) . (3.33)

The interpretation of the F1-score is less intuitive compared to ACC. The highest
possible value is 1, and the lowest is 0. In this definition, precision and recall are
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valued evenly. Hand et al. criticize the common use of balanced precision and recall
since the relative relevance of precision and recall are problem specific [Hand 18].
Similar to the ACC, the ratio between positive and negative samples is not taken
into account, thus on imbalanced datasets the F1-score may be misleading [Chic 20].

3.5.4 Micro and Macro F1-score
The F1-score can also be computed for multi-class problems. In this case, either the
averages of precision and recall (micro) or the average of the individual F1-scores
(macro) are computed. The value difference between the two can be significant. On
imbalanced datasets, the micro-average result can be dominated by the largest class,
while the macro-average will give each class equal weight.
The micro F1-score is defined as:

Fmicro = 2 · micro-precision · micro-recall
micro-precision + micro-recall (3.34)

where
micro-precision =

∑N
n=1 TPn∑N

n=1 (TPn + FPn)
, (3.35)

micro-recall =
∑N

n=1 TPn∑N
n=1 (TPn + FNn)

, (3.36)

N the number of classes and TPn, FPn and FNn the result of each class n. In multi-
class problems, however, each misclassification is with respect to one class an FP, and
with respect to another class an FN [Zhan 15]. Therefore, the sum of FP and FN is
equal:

N∑
n=1

FPn =
N∑

n=1
FNn . (3.37)

The implication of this is that micro-precision equals micro-recall and the micro F1-
score can be simplified to:

Fmicro =
∑N

n=1 TPn∑N
n=1 (TPn + FPn)

=
∑N

n=1 TPn∑N
n=1 (TPn + FNn)

(3.38)

For the macro F1-score, a class-specific F1-score is calculated independently and the
final score is calculated by averaging the individual scores. It is therefore defined as:

Fmacro = 1
N

N∑
n=1

Fn (3.39)

where Fn is the F1-score of each class.

3.5.5 Matthews Correlation Coefficient (MCC)
The Matthews Correlation Coefficient (MCC) is a balanced metric taking TP, TN,
FP, and FN equally into account. It is defined as:

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (3.40)
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Figure 3.7: Example ROC curve, plotting the FPR against TPR. The blue curve
shows the result of a random classifier. The green curve is an example classifier,
performing better than random.

The MCC results in a value between −1 and 1, where −1 is the worst value and 1
the best. A total random classifier will have MCC = 0.

Unlike ACC and F1-score, the MCC produces a reliable result even for imbalanced
datasets [Chic 20]. This means, that a classifier will obtain a high score by predicting
negative and positive cases equally well, even on imbalanced datasets. The MCC
is undefined when one of the classes, positive or negative, is empty. This can be
overcome by substituting the missing values with an arbitrarily small value.

3.5.6 Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is created by plotting the false
positive rate (FPR) against the true positive rate (TPR) at different thresholds.
For a threshold-dependent classification approach, the result will vary depending on
the selected threshold. When for example using a simple, single threshold-based
appliance segmentation approach, a small threshold will easily capture all positive
cases where the appliance is switched ON, but it will at the same time produce many
false positives. Increasing the threshold will now decrease the FPR while decreasing
the TPR. All previously mentioned metrics would only measure the performance at
a single point on the ROC curve, at a single threshold. Figure 3.7 shows an example
ROC curve.

A single value metric that tries to capture the quality of the whole ROC curve
can be calculated as the Area under the Curve (AUC). It is defined as:

AUC =
∫ 1

0
ROC dFPR . (3.41)
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Figure 3.8: Example boxplot where Q1 and Q3 are the boundaries of the IQR and
the vertical bar is the median. The whiskers mark the range of data within 1.5× IQR
distance. The rhombus-shaped dots indicate outlier data points, which are outside
the 1.5 × IQR distance.

The AUC is in the interval [0, 1], where 0 is the worst, 0.5 is the result of a total
random classifier, and 1 is the best.

3.5.7 Interquartile Range (IQR)
The interquartile range (IQR) is a measure of the variability of data [Dekk 05]. In
the case of evaluations, this data can be a performance measure such as an F1-score
or accuracy. The data is divided into quartiles, providing a five-number summary of
the data denoted as Q0 to Q4: minimum (Q0), maximum (Q4), median (Q2), and the
25th (Q1) and 75th (Q3) percentiles. Therefore, 25% of the data are smaller or equal
to Q1, 50% of the data are smaller or equal to Q2, and 75% of the data are smaller
or equal to Q3. The range between Q1 and Q3 is known as the IQR:

IQR = Q3 − Q1 . (3.42)

A boxplot, as shown in Fig. 3.8, is a combined visualization of the data distribu-
tion based on these quartiles. Q1, Q3 are visualized as a box, and the median (Q2) is
marked as a vertical bar. The data points that are within 1.5 × IQR distance to the
left or right of Q1 and Q3 are marked by whiskers. Points outside this area are seen
as outliers and marked using rhombus-shaped dots.
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Demand Response creates a decision-making challenge for residents where for
every usage of an appliance, the electrical load and the electricity price need to be
estimated to make a cost versus need decision (cf. Fig. 4.1).

In an ideal and oversimplified scenario, the optimum Demand Response (DR)
policy is: to run the appliance whenever the electricity price is lowest.

This policy no longer works when the electricity price changes during a single
appliance usage. As a result, the optimal time to start an appliance depends on mul-
tiple pricing steps. Additionally, appliances do not necessarily have a constant load
profile, so mapping the load profile and electricity price can be a complex decision.
Delaying appliance usage comes with discomfort as it interferes with the resident’s
daily life and habits. This discomfort is intrinsic to each household, resident, and
appliance, and must be considered each time an appliance is used.

Electricity
Demand + Electricity

Price

Action

Figure 4.1: Simple illustration of the Demand Response process. The action taken
by a resident is based on the demand/need to use an appliance and the current
electricity price.

35
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This complex system is modeled by [ONei 10] as an optimal control system con-
taining a number of appliances m ∈ {1, . . . , M}. The system state is defined by

Ω(t) = [x(t)T , y(t)T , z(t)T , p(t)]T , Ω ∈ R3M+1
+ , (4.1)

where x(t) is the pending backlog of required electricity, y(t) the average pending
workload, z(t) a vector describing the residents’ intention/demand to use an appli-
ance, and p(t) the dynamic electricity price.

The vector z(t) only captures the residents’ demand on an appliance. The post-
poned start is then managed by a control policy and captured in u(t), which is the
electricity allocated to the appliances at time t.

The residents’ demand at time t is modeled as

zm(t) = γm(t − t0) Appliance demanded,
zm(t) = 0 Appliance NOT demanded,

where γm(τ) is an appliance’s electrical load profile at time τ , defined by the time
difference between the given time t and the appliance’s start time t0.

The pending electricity backlog is written as

x(t + 1) = x(t) + z(t) − u(t), x(t), z(t), u(t) ∈ RM
+ , (4.2)

where u(t) ≤ x(t).
At time t, the residents’ intention/demand z(t) and the electricity price p(t) is

known, and the allocated energy (action) u(t) is determined by a control policy with
the goal to minimize financial cost while minimizing the residents’ discomfort.

The financial cost at time t is composed of the allocated electricity u(t) multiplied
by the current electricity price p(t):

M∑
m=1

p(t)um(t) . (4.3)

A resident’s dissatisfaction, caused by delaying appliance usage, can be expressed
as the negative of what is known in the literature as utility functions. Utility functions
are a mathematical abstraction to model a customer’s preference for owning or using
a product. The negative utility, here called the dis-utility Ū , is used to define the
total cost of delaying an appliance usage:

M∑
m=1

Ūm(ym(t)) , (4.4)

where ym is a function that models the resident’s dissatisfaction caused by a delay.
As an example, ym can be defined as the average pending workload of the system,
meaning that the resident’s satisfaction is driven by appliances to operate sooner
rather than later. This can be defined as:

ym(t + 1) = θmym(t) + (1 − θm)xm(t) , (4.5)

where 0 < θm < 1 defines smoothing preferences over time. When θm ≈ 1, residents
are sensitive to the average pending workload, and when θm ≈ 0 they are sensitive
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to the pending backlog of required electricity. A high θm, therefore, expresses the
resident’s preference to lower dissatisfaction in the long run.

The sum of (4.3) and (4.4) defines the cost of DR for a given state Ω(t) as

Φ(Ω(t), u(t)) =
M∑

m=1
(p(t)um(t) + λŪm(ym(t))), (4.6)

where λ ≥ 0 is used to put a price on the dis-utility, helping to determine the
trade-off between financial cost and dis-utility.

In the simplest implementation, this control process is directly managed by the
residents by minimizing (4.6). The required willingness for this optimization task
increases proportionally with the complexity of the system state Ω. A complexity
reduction of any part of the system, therefore, has the potential to influence the
consumer’s willingness to participate. As a consequence, it is desirable that the un-
derlying DR control process is at least assisted, or at best fully operated by machine
learning algorithms, reducing complexity, and possibly increasing willingness to par-
ticipate. This can be achieved by automating the following processes:

• Identifying appliance m (type or model),

• determining appliance load profiles γ,

• determining boundaries of load shifting, modeled as the dis-utility Ū ,

• predicting appliance usage z(t),

• estimating total cost Φ(Ω(t), u(t)) and providing recommendations or automat-
ically performing actions.

4.1 Data

A data source for DR is everything that helps to understand the demand, behavior,
and needs of a household. The source of these data can be anything from geographic
features, standard load profiles or weather data, to high-resolution electricity mon-
itoring using smart meters. These data can be roughly categorized as microscopic
and macroscopic.

4.1.1 Macroscopic Data
These do not directly relate to the individual household and rather provide insight
into the residential sector in general. According to [Swan 09], such data “include
macroeconomic indicators (gross domestic product (GDP), employment rates, and
price indices), climatic conditions, housing construction/demolition rates, and esti-
mates of appliance ownership and number of units in the residential sector”. Standard
load profiles such as H0 (see Fig. 2.1) are also classified as macroscopic data [Bitt 99].
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4.1.2 Microscopic Data
These have a direct relation to the household and residents, providing direct elec-
tricity consumption information. Based on microscopic data, gaining insight into the
residents’ usage habits can lead to an explicit understanding of a user’s decision. The
primary source of microscopic data is high-resolution electricity monitoring equip-
ment such as smart meters. Smart meters are being installed throughout the EU,
as a result of the EU directive 2009/72/EC [EU D 19], increasing the availability of
higher-resolution electricity consumption data in the near future.

Electricity load monitoring or sometimes called Appliance Load Monitoring (ALM)
can be divided into two main categories: Intrusive Load Monitoring (ILM) and Non-
Intrusive Load Monitoring (NILM). NILM was first described in 1985 by George
Hart where he referred to it as Non-Intrusive Appliance Load Monitor (NALM)
[Hart 85, Hart 92]. The main difference between ILM and NILM lies within the num-
ber of metering points used to monitor a household’s loads and therefore also within
the level of detail provided by the metering operation. NILM uses only a single me-
tering point, thus relying on decomposing the aggregated load into its components
through mathematical algorithms. In this regard, the single metering point refers to a
single location within the house and not a single power line, therefore in the case of a
three-phase installation, the phases may still be monitored separately. Non-intrusive
means that no extra equipment is installed in the house, as opposed to ILM, where
“intrusive means that the meter is located in the habitation” [Ridi 14]. By these
definitions, ILM is less strictly defined. The depth at which additional meters are
installed may vary from per room to per appliance, meaning that decomposition may
still be required. More detailed ILM subcategories are proposed by [Ridi 14], where
ILM 1 refers to zones, ILM 2 to plug level, and ILM 3 to appliance level metering.
The mathematical decomposition of NILM and ILM 1/2 data into the individual
loads, also called disaggregation, is a nontrivial task and still an active research field.
The disaggregation problem is the decomposition of the total load L(t) into the sub
loads lm(t) and is expressed as:

L(t) =
M∑

m=1
lm(t) . (4.7)

Figure 4.2 shows an example of aggregated loads L(t) and the attribution to each
individual appliance m.

The data that can be utilized are not restricted to load monitoring data (values
over time), but also additional data explaining the circumstances under which the
data were collected. Such secondary sources can be dwelling type, occupancy level,
household income, and education level [Tasc 18]. Furthermore, for many tasks, the
raw load monitoring data is enriched with expert knowledge in the form of additional
data points that provide the base for specific tasks or simply help to clean the data.

In the household electricity domain, additional data are:

• Appliance labels: Model name, number, category.

• Data collection setup: Equipment, sensor placement.

• Demographic data: Location, inhabitants.
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Figure 4.2: Smart-meter measurement accumulating electricity demand of refrig-
erator, dishwasher, washing machine, and coffee machine. The total household load
is the sum of all active individual appliances. Sample measurements are taken from
the Domestic Energy Demand Dataset of Individual Appliances in Germany (DED-
DIAG) dataset [Wenn 21b].

• Segmentation labels: Occupancy, ON/OFF switching event.

• Error labels: Explanation of errors in the recorded data.

4.1.3 Public Datasets
The most significant enablers of machine learning research are available datasets.
Even more important are publicly available datasets, since only with this availability
can different research teams evaluate publications and develop established techniques.
Since the early 1990s, a large number of public datasets in all kinds of domains have
been released. Inspired by the success of datasets in image recognition domains
such as MNIST or PASCAL, in 2011 [Kolt 11] published the first dataset for energy
disaggregation. At the time [Kolt 11] argue, that “although there are vast amounts
of data relevant to energy domains” ... “the majority of this data is unavailable to
researcher”. Furthermore, the authors argue that many other domains have greatly
benefited from public benchmark datasets such as MNIST [Lecu 98] for handwritten
digit recognition or PASCAL [Ever 10] for visual object category recognition and
detection.

Since then, more and more datasets have been released with different target energy
applications in mind. Table 4.1 provides an overview of available datasets in the year
2021. The datasets can in general be differentiated by:

• location

• count

• duration

• sample frequency

• level at which data was collected (whole house, rooms, plugs, appliances)

• additional information provided.



Table 4.1: Public appliance and whole-house level energy consumption datasets.

Data set Reference Location
Duration
per
house

Number
of
houses

Appliance
sample
intervall

Aggregate
sample
intervall

Citations

REDD [Kolt 11] MA, USA 3–19 days 6 3 sec 1 Hz & 15 kHz 898
Smart* [Bark 12] MA, USA 2–3 years 7 / 114 60sec / – 60sec / 15min 341
Tracebase [Rein 12] – 24h – 3s – 184
BLUED [Ande 12b] USA 7 days 1 12 kHz 1 kHz 52
iAWE [Batr 13] New Delhi, India 73 days 1 1 Hz 1 Hz 107
ACS-F1 [Gisl 13] – 1h – 10 sec – –
COMBED [Batr 14b] Delhi, India 2 years 2 30s 30s 89
Dataport [Peca 14] TX, USA 0–2.75 years 824 1 min 1 min –
ECO [Beck 14] Switzerland 8 months 6 1 sec 1 sec 180
GREEND [Mona 14] Italy & Austria 8 months 8 – 1 Hz 109
DRED [Utta 15] Netherlands 2 months 1 1 Hz 1 Hz 53
REFIT [Murr 15] UK 20 1 year 8s 8s 55
UK-DALE [Kell 15] London, UK 3–26 months 5 6 sec 1–6 sec & 16 kHz 264
AMPds v2 [Mako 16] BC, Canada 2 years 1 1 min 1 min 162
WHITEDv1.1 [Kahl 16] Austria, Germany, Indonesia – – 44.1 kHz – –
COOLL [Pico 16] Orléans, France 0–19ms – 100 kHz – 58
RAE [Mako 17] Vancouver, Canada 72 days 2 1 Hz 1 Hz 10
BLOND [Krie 17] Munich, Germany 213 days / 50 days 1 50 kHz / 250 kHz 6.4 kHz / 50 kHz 54
PLAID 2017 [Gao 14, De B 20] USA 55 – 30 kHz – –
IDEAL [Pull 21] UK 286 days 255 5 sec Hz 1 Hz, 2
DEDDIAG [Wenn 21b] Germany 1–3.5 years 15 1 Hz 1 Hz –
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A review on electricity datasets highlights the diversity of the datasets as they dif-
fer in location, duration, frequency, file format, and several other aspects [Klem 19].
The authors of the aforementioned publication suggest two primary objectives for
the collection and provisioning of datasets, (1) interoperability and (2) comparabil-
ity. This would help to decrease heterogeneity, thus increasing the comparability
of publications. An aspect highlighted by the authors is missing metadata describ-
ing the circumstances of the data recording. This is especially relevant for it to be
possible to find explanations for behavior and behavior changes.

Based on citation count, REDD is the most prominent and often used dataset.
The dataset offers recording of up to 19 days of 6 houses with a varying number of
appliances [Kolt 11]. The dataset offers single appliance measurements of 1 Hz; the
overall house measurements of the two circuits are 15 kHz. The dataset was developed
predominantly for the disaggregation task and because of the short time span it can
in all likelihood be used only for that purpose. Tasks such as user behavior analysis
require measurements over a much greater time span because most devices (e. g.,
dishwasher or washing machine) are not often used. The Smart* dataset does cover
a longer time span, but with a period of 3 months, it also does not provide many
samples [Bark 12]. The AMPds 2 dataset does provide 2 years of measurements, but
only samples at 1/60 Hz, which is enough for behavior analysis, but currently not
for disaggregation tasks [Mako 16]. ECO and GREEND both provide an acceptable
amount of data, but a short evaluation of the datasets reveals very low quality as a
result of long, undocumented interruptions, which is not ideal for usage prediction,
behavior analysis, or similar tasks where high-quality measurements are required
[Beck 14, Mona 14].

In this thesis, a new public dataset called DEDDIAG is presented in Chapter 5.
The dataset has previously been described in the following published manuscript:
[Wenn 21b].

4.2 Knowledge
Knowledge is retrieved from data using a bottom-up or top-down approach, depending
on the data source being microscopic or macroscopic [Swan 09]. These terms are used
in literature in order to group data processing methods. Methods that make use of
both, microscopic and macroscopic data, are called hybrid [Proe 21].

4.2.1 General Approaches

Top-Down

Top-down approaches rely on macroscopic data, requiring only aggregated data that
are more readily available and are usually less sensitive in terms of the resident’s pri-
vacy. In top-down approaches, the electricity demand is primarily modeled to obtain
requirements for the supply side, where the individual household is less important,
modeling long-term changes and transitions rather than individual usage patterns
[Swan 09].
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The total residential sector electricity demand and the characteristics of dwellings,
age, sex, income, level of education, and family constellations within a sector are
used to derive profiles by which individual households can be categorized. Since this
approach relies on historical data, these models have “no inherent capability to model
discontinuous advances in technology” and further the “lack of detail regarding the
energy consumption of individual end-uses eliminates the capability of identifying
key areas for improvements for the reduction of energy consumption” [Swan 09].

The following six steps are described in [Proe 21] as the common procedure to
develop a top-down model:

• Step 1: Find a historical electricity dataset of a sufficient sampling rate.

• Step 2: Determine the macroscopic data needed.

• Step 3: Cluster different combinations of data by available dimensions.

• Step 4: Determine stochastic predictors based on time-series analysis of the
dataset.

• Step 5: Combine stochastic predictors and clusters.

• Step 6: Validate the model.

Bottom-Up

Bottom-up approaches rely on microscopic data and have the potential to provide
a much more detailed model of a household’s demand as electricity consumption is
closely monitored and does not solely rely on historical data. Bottom-up methods
“calculate the individual dwelling energy or electricity consumption and extrapolate
these results over a target area or region” [Swan 09]. Such methods follow the DR
system understanding described by [ONei 10], where individual appliances m and
load profiles γm have to be determined. Further, the residents’ behavior patterns,
i. e., the relation between appliances’ usages, are combined with the load patterns to
compute a household’s electricity demand pattern. This results in a very detailed and
household-specific profile, where the individual contribution of each appliance to the
total electricity demand is known. The main advantage of the bottom-up model is
that it provides a very detailed analysis of the households, permitting the model to ac-
count for individual differences. The main disadvantages are that these models require
very detailed data about each household and that they are computationally heavy as
they need to be calculated for each household individually. Regarding privacy, the
answer is two-headed: while in cases where the household-specific, high-resolution
data are processed on-premises, the privacy of the household is well respected; data
remain a high privacy concern, however, in many cases, they have to be transferred
to a data-center.

The following five steps are described by [Proe 21] as the common procedures to
develop a bottom-up model:

• Step 1: Determine the model’s variables such as appliances m and load profile
γm.
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Figure 4.3: Example power plots of the four appliance categories Type-I–IV: On-
Off, Finite State Machines, Continuously Variable, Permanent On.

• Step 2: Determine each appliance’s usage pattern from historical data.

• Step 3: Generate the individual load profile for each appliance.

• Step 4: Aggregate the individual load profiles from single or multiple house-
holds.

• Step 5: Validate the model.

The appliances’ load profiles can be categorized by the operational state and who
controls the appliance (Active vs. Autonomous Control) [Hart 92, Bara 03]. The load
patterns, also called signatures, are composed of operational states that can be cat-
egorized into four types. Type-I, II, and III have been described by [Hart 92], and
Type-IV was added by [Bara 03]. Examples are shown in Table 4.2.

• Type-I: On-Off
These are appliances with only two operational states (ON/OFF). In these two
states, the load is constant and can be described by a single repeating pattern.

• Type-II: Finite State Machines
Appliances with multiple operational states can be described by a combination
of multiple patterns. The number of operational states and combinations of
patterns is finite and can be described by a Finite State Machine (FSM). The
switching pattern of these appliances is repeatable and forms a start-stop cycle.

• Type-III: Continuously Variable
These appliances do not have a fixed number of states and the load pattern
varies constantly. There is no relation between loads and states of the appliance
making the identification and disaggregation very challenging.

• Type-IV: Permanent On
Appliances that have a permanent load and are switched ON over several days
or months.

The difficulty of knowledge extraction heavily depends on the appliance operation
states, since only appliances of Type-I, II, and IV follow recurring patterns. Type-IV
is always switched ON and therefore not relevant for load shifting in DR, leaving
Type-I & II as the appliances relevant for DR.
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Table 4.2: Classification of various household appliances [Hart 92, Bara 03].

Type Active Control Autonomous Control
I Lamps, Kitchen Appliances, Hair-Dryer Fridges, freezers
II Washing Machines, Dryers, Dish Washers Ventilation
III Lighting with Dimmers, Office Desks –
IV Manual Air Conditioning, Routers Automatic Air Conditioning

Hybrid

Hybrid methods try to combine both microscopic and macroscopic data, and there-
fore combine techniques used in both bottom-up and top-down approaches. Com-
bining bottom-up knowledge about a household’s appliances, load demand profiles,
and usage habits with top-down knowledge from clustering households allows hybrid
methods to utilize more available data [John 14]. As demonstrated by [Zhon 16], such
algorithms can overcome the bias of load profile clustering as they facilitate identify-
ing unusual groups of customers that share spikes in their electricity demand profile.
Their model combines smart-meter data from several households and identifies several
clusters including outliers.

The following five steps are described by [Proe 21] as the common procedure to
develop a hybrid model:

• Step 1: Determine the micro- and macroscopic data to be used.

• Step 2: Execute step 1–3 of the bottom-up approach.

• Step 3: Execute step 1–4 of the top-down approach.

• Step 4: Combine the results to generate demand load profiles.

• Step 5: Validate the model.

4.2.2 Features
The knowledge extraction is done on derived values (features) or certain segments of
the raw signal. Feature extractions depend on the available data and the methods
used. The typical raw measurements provided by a metering device are voltage,
current, and power recorded over time. Depending on the sample rate, different
properties of the signal can be utilized, as appliances produce features at different
detail levels.

Current and Voltage

Modern metering devices record current and voltage and derive all further values such
as power from it. The voltage does not depend on the measured appliance and is a
property of the network. Since the electrical power is an AC (alternating current)
circuit, the voltage and current are sinusoidal and can be expressed as:

V (t) = Vmax sin(ωt + ϕv) , (4.8)
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Figure 4.4: Plot of power when voltage and current are in phase. Y-axes show the
power P as the product of voltage V and current I and the resulting average power
Pavg.

I(t) = Imax sin(ωt + ϕI) , (4.9)
where V (t) and I(t) are the voltage and current at given time t, Vmax and Imax the
maximum voltage and current, ω the angular frequency, and ϕv and ϕI the phase
shift. The angular frequency ω is defined as radians per seconds, where for 60 Hz it
is given as ω = 2π ·60 Hz = 377 rad/s. In practice, the current and voltage waveforms
do not conform to this precise mathematical definition as shown in Fig. 4.4 [Meie 06].
While the waveform will be periodic and have periodic zero crossings, the shape is
not round and smooth. A phase shift between voltage and current may also occur.
This deviation from a perfect, single frequency, sinusoidal function is a property that
can be used for appliance identification and is discussed in Section 4.2.2.

It is common to describe a network’s voltage as the root-mean-square (RMS) value
and not as the sinusoidal function. In most countries, the RMS voltage fluctuates
around 230 V, and e. g., in the United States of America at 110 V. Fluctuations in
the voltage signal’s RMS value is caused by load change on the network. The RMS
of voltage and current can be calculated by taking the RMS of (4.8) and (4.9), which
reduces to:

Vrms = 1√
2

Vmax , (4.10)

Irms = 1√
2

Imax . (4.11)

On the other hand, the measured current depends on the recorded appliance.
Since the required power of an appliance is dependent on current and voltage, the
current will increase with decreasing voltage. The instantaneous power is defined by:

P (t) = I(t)V (t) . (4.12)

This product of voltage and current is uncommon to use, and it is more common
to describe the average power as the product of the RMS values [Meie 06]:

Pavg = IrmsVrms . (4.13)

This equation is only true for the resistive case, where current and voltage are not
shifted in time and their maxima coincide, thus only describing an idealized scenario.
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Figure 4.5: Plot of power when current lags behind voltage by the phase angle ϕ.
Y-axes show the power P as the product of voltage V and current I and the resulting
average power Pavg.

When current and voltage are shifted in time (ϕI ̸= ϕV ), this equation will calculate
the so called apparent power (S):

S = IrmsVrms . (4.14)
When using current and voltage as a feature, the sampling rate must be high

enough to quantify a possible phase shift, or it must be acknowledged that Irms
and Vrms may be subject to a phase shift and their product does not represent an
appliance’s consumed power. Nonetheless, the properties provided by instantaneous
voltage and current or their RMS values provide rich, appliance-specific features
that can be exploited for the appliance identification task. Voltage has been used
by [Kato 09, Meeh 12, Weis 12, Kahl 19, Berg 10, Faus 20, Faus 21, Kolt 11, De B 18b]
and current by [Kato 09, Meeh 12, Weis 12, Kahl 19, Berg 10, Lai 13, Jana 13, Faus 20,
Faus 21, Kolt 11, De B 18b].

Real and Reactive Power

When voltage and current are shifted in time as shown in Fig. 4.5, the average power
is defined by:

Pavg = IrmsVrms cos ϕ , (4.15)
where ϕ is the angle of the phase shift between voltage and current. This average
power, is an appliance’s actual transmitted and consumed power and is also known
as real power or active power. The counterpart of real power (P ) is the reactive power
(Q) which is expressed as:

Q = IrmsVrms sin ϕ . (4.16)
The relation between P , Q and S can be illustrated as a power triangle as shown in
Fig. 4.6.

Real power (P ) and/or reactive power (Q) consumption are common feature used
for appliance identification [Abub 16]. PQ are usually used when the appliance is in
a steady state, facing the challenge that the PQ signature of different appliances is
less distinct as the signature is very similar in a steady state. P and/or Q has been
used by [Rein 12, Ridi 13, Weis 12, Zaid 10, Wenn 19b, Figu 11, Giri 13]. Following
the appliance Types-I–IV described in Section 4.2.1 (On-Off, Finite State Machines,
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Figure 4.6: Power triangle showing relation of apparent power S, real power P and
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Figure 4.7: HAR in a 50 Hz current signal. The distorted measured signal is a
combination of the fundamental 50 Hz signal and the introduced distortion.

Continuously Variable, Permanent On), the available features based on PQ are differ-
ent. On-Off appliances have a certain step-like change in electricity demand. When
the appliances are switched on, there is insubstantial information on the appliances’
power consumption. Type-II (Finite State Machines) appliances on the other hand,
will produce a signature when being switched on as well as having a certain pattern
or power changes during their operation. The PQ features of Type-III (Continuously
Variable) appliances do not have a certain level when being switched on and also do
not follow any recursive pattern. As Type-IV (Permanent On) appliances are always
switched on, no switching related PQ changes are available.

Harmonic Distortion

When high sample rate data is available, the harmonics in a power system can be
exploited. Appliances, that draw abrupt short current pulses rather than smooth
sinusoidal currents provide an exploitable signature. These features are known as
harmonic distortion (HAR) [Feng 13, Meeh 12, Srin 06, Hail 96, Jana 13]. An example
for a HAR in a current signal is shown in Fig. 4.7. It shows the fundamental 50 Hz
sine wave, as well as the distortion signal and the resulting distorted current signal.
When the current and voltage waveforms oscillate proportionally the load is linear,
otherwise the load is non-linear. The distortion phenomena of non-linear loads can
be described using harmonic analysis.
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Figure 4.8: Standard V-I trajectory plots where current and voltage are plotted
against each other. Examples are taken from the COOLL dataset. The data are
scaled to range −1 to +1.

V-I Trajectory

[Lam 07] describe another high sample rate features known as voltage-current (V-I)
trajectory. The V-I trajectory is a 2-dimensional feature containing one normalized
wave cycle of voltage and current. Voltage and current are usually plotted on two
axes as shown in Fig. 4.8. The different shapes of the plots are clearly visible. The
mutual locus of the steady state instantaneous voltage and current form provide
unique shapes for each appliance. Based on the plotted V-I trajectory feature, 8
different characteristics have been described by Lam et al. [Lam 07]: asymmetry,
looping direction, area, the curvature of the mean line, self-intersection, slope of the
middle segment, area of left and right segments, and the peak of the middle segment.
While such hand-crafted features help to understand the different characteristics, it
has been shown that by using a deep neural network the classification of V-I plots can
directly be learned by a classification algorithm [Du 16, Gao 15, De B 18a, Faus 20,
Faus 21].

4.2.3 Event detection
Next to the feature extraction, event-based algorithms use only certain segments of
the signal known as events. Events and their detection are a major topic surrounding
appliance identification, segmentation, and usage prediction. The definition of an
event in DR, ILM, or NILM context is less clear than anticipated. In literature the
terms events, edges, and transient states are to some extent used as synonyms, all
describing the segment between steady states or the appliance’s ON/OFF switching
events. Algorithms that find such segments are called event/edge detection algo-
rithms. Kahl et al. conclude that no generally acknowledged event definition exists,
although “The event detection performance depends strongly on the event definition
itself” [Kahl 19]. Event detection in the NILM context is seen as a pre-processing
step for the classification task. In general, there are two understandings of events
that we propose to call edge events and switching events. Fig. 4.9 shows a dishwasher
cycle and the two different types of events.

Edge events are events, that are defined by significant changes in the power signals,
the edges. These edges are mentioned in the early publications from Hart where he
defines edges as step-like changes in the signal [Hart 92]. This is also the event
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Figure 4.9: Switching and edges events off a dishwasher (appliance 4) from the
DEDDIAG dataset.

definition of Wild et al., who defines an event as the “transition from one steady
state to another steady state which definitely differs from the previous one” [Wild 15].
These edge-defined events can be detected by applying a threshold filter to the first
derivative of the signal [Alca 17].

The second type of events, the switching events, are defined by the switch ON
and OFF action. Kahl et al. argue that “appliance ON / OFF events that have a
causal origin (i.e., from user interaction or physical appliance state changes) are more
relevant than transients that simply satisfy the rule set” [Kahl 19]. Their reasoning
is, that users are more interested in appliance cycles such as the start and stop of a
washing machine than the temporary increase in energy consumption of a laptop or
similar appliances. Anderson et al. describe their event detection algorithm filters as
only windows where an appliance’s electricity demand is above a trained threshold
[Ande 12a]. Jiang et al. define these events as the transient state between defined
appliance states such as ON/OFF [Jian 13]. They describe an edge symbol detector
(ESD) algorithm to detect the switch-on and switch-off events.

Edge events are a single point in time and are described by a single timestamp t.
Switching events exist as two interconnected ON and OFF event pairs. The switching-
event pair describes a time span defined by the lower and upper bounds (t0, t1). They
follow the natural order of the ON event preceding the OFF event: t0 < t1. Further,
the switching-event pairs describe the start and end of the associated load profile γ.
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4.3 Action
Based on the acquired knowledge, personalized recommendations can be formulated
and actions scheduled and executed. An ideal recommendation system will minimize
the total cost Φ(Ω(t), u(t)) in (4.6), by balancing electricity cost and the residents’
comfort. Actions are understood as the execution of recommendations, where the
execution may either be done by a resident or an actuator, or in some cases by both.
An example of the participation of both residents and actuator is load shifting of
a washing machine, which has to be prepared by the resident and is started by an
actuator. Examples of simple recommendations formulated by a load shifting systems
proposed by [Fisc 13] are:

• Save £13 by shifting a quarter of your daytime use of washing machines, dish-
washers, or tumble dryers to night-times.

• Save £25 by shifting half of your daytime use of washing machine, dishwasher,
or tumble dryer to night-times.

• Save £51 by shifting all of your daytime use of washing machine, dishwasher,
or tumble dryer to night-times.

The recommendations are presented using a Graphical User Interface (GUI) as
part of a walk-through interface that guides the users.

Another system described by [Qayy 15], formulates recommendations based on a
total cost function similar to (4.6), while respecting a number of electricity and time
constraints. The electricity constraint makes sure that a predefined upper peak limit
is not exceeded and that an appliance’s load profile is well in line with the dynamic
electricity price. The time constraint models uninterruptible operations, constraints
between sequential usages where, e. g., a tumble dryer is always used after the washing
machine, and lastly respecting the resident’s time preferences. Based on this they
present the user a list of optimal day-ahead scheduling times for each appliance using
15min slots.

4.4 A Machine Learning Demand Response Model

4.4.1 General Model
Based on the system understanding of the DR process described at the beginning of
this Chapter 4, the simple system model in Fig. 4.1 is extended into a more complex
model called Machine Learning Demand Response Model (MLDR), first presented
here.

The MLDR (cf. Fig. 4.10) is organized in three levels: data → knowledge → ac-
tion. It is inspired by the data–information–knowledge–wisdom hierarchy (DIKW)
[Rowl 07], a way to model the relationship between data, information, knowledge,
and wisdom as a pyramid. Information and knowledge can be understood as: “In-
formation is data processed for a purpose” [Curt 08], “Knowledge is the combination
of data and information, to which is added expert opinion, skills, and experience,
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Figure 4.10: MLDR, organized in three levels. The data level describes all available
data sources that are used by the knowledge level to formulate actions and recom-
mendations.

to result in a valuable asset which can be used to aid decision-making” [Chaf 11].
MLDR therefore does not distinguish between information, knowledge, and wisdom,
as its purpose is to transform data into actions.

4.4.2 Specific Model
The following chapters present a more specific bottom-up DR model for Type-I & II
appliances, highlighting the individual machine-learning steps required for knowledge
extraction from microscopic data. The first step after data acquisition is the identi-
fication of the appliance category or type. This is followed by a segmentation step
to find ON/OFF-switching events from which the load pattern and usage pattern
can be derived. As shown in Fig. 4.11, these patterns and events are the basis for
forecasting and recommendations.

The segmentation of ON/OFF-switching events is often described as a pre-pro-
cessing step of appliance identification. We deliberately describe this step after the
appliance identification, as this is not done in order to simplify the identification, but
in order to obtain precise ON/OFF-switching events for each appliance.

The difficulty of knowledge extraction depends on the input data: For ILM 3
data, where the data points are not an aggregate of multiple appliances, each data
point belongs to a distinct category, whereas on the other hand, a NILM and ILM
1/2 data point belongs to a set of appliances, thus to a set of categories. When
only the aggregated loads are available (NILM and ILM 1/2), the complexity of
the MLDR steps increases. Hart describes that NILM (the used abbreviation was
NALM) “estimates the number and nature of the individual loads, their individual
energy consumption, and other relevant statistics such as time-of-day variations.”
[Hart 92]. Thus, his understanding of NILM goes beyond the disaggregation task as
expressed in (4.7), but also includes further statistics. Following his understanding,
NILM is the knowledge extraction from microscopic data using a bottom-up approach
where only aggregated loads are present. The NILM process is described by [Abub 16]
as three stages: Data Acquisition, Feature Extraction, and Appliance Classification.
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Figure 4.11: Knowledge extraction steps required for machine learning-based de-
mand response using a bottom-up approach.

Therefore, from a DR perspective, NILM algorithms follow the MLDR steps shown
in Fig. 4.11 and require identification of appliances as well as event segmentation.
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Substantial parts of this chapter have been published in the following manuscript:
[Wenn 21b]. The majority of the manuscript has been authored by the author of this
thesis. The main scientific contributions are based on his own work and thoughts.

5.1 Introduction
This chapter describes the creation of a new dataset called Domestic Energy Demand
Dataset of Individual Appliances in Germany (DEDDIAG).

The collection of such datasets is no trivial task since the data has to be collected
over a long period at high frequency. Data is an integral part of machine learning,
required for training in supervised learning and for evaluation of all learning efforts.
It, therefore, represents the base of information discovery, providing ground truth.
The machine learning community has a history of making Intrusive Load Monitor-
ing (ILM) and Non-Intrusive Load Monitoring (NILM) datasets publicly available
for comparability purposes. The release of public datasets embraces the scientific
paradigm of “standing on the shoulder of giants” as it is a large enabler for iterative
improvements.

5.2 Data Collection System
In the following, an electricity data collection system for single appliances as well as
whole-house level is described. The general requirements derive from a 2-year load-
shift monitoring project, where homes were monitored. The goal of the project was to
record real-world behavior to understand the load-shift potential, and at a later stage
provide the homes with RTP (Real-Time-Pricing) incentives for load-shifting. As
part of the project, a statistics-based appliance usage prediction algorithm has been
developed that will help to reduce the complexity of RTP behavior recommendation

53
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systems [Wenn 17], as well as an event segmentation algorithm that helps to identify
appliance usage in raw electricity measurements [Wenn 19b].

The full data collection system is published under MIT license and is avail-
able under https://DEDDIAG.github.io. The dataset itself is published as tab-
separated text files, together with code, to import all data into a PostgreSQL in-
stance. An Structured Query Language (SQL) function called get_measurements()
is provided to get seconds-based measurements, where readings are converted from
value-changes to seconds-based readings using interpolation; timestamps are rounded
to nearest seconds. There is also a python package available https://github.
com/DEDDIAG/DEDDIAG-loader.git that assists in retrieving data into a pandas-
DataFrame/numpy-array.

5.2.1 Requirements
The collection system was built with a focus on recording data for a user behav-
ior change scenario such as Real-Time-Pricing (RTP). Therefore, the focus lies on
recording appliances with the following properties:

• easily shiftable load,
• significant electricity consumption,
• standard power plug.

Appliances falling under these terms are washing machines, dishwashers, fridges, and
freezers, thus the datasets will mostly contain these appliances.
The general requirements were:

• collect appliances and, optionally, whole-house electricity usage,
• store data locally,
• upload data frequently to a central server,
• collect over a long time period (> 2 years) at ≈ 1 Hz,
• no technical knowledge required to install the system,
• keep costs low.

Hardware Requirements

For a non-technical user to install the hardware and software in their home environ-
ment, it should be user-friendly. For this reason, the hardware should be placed in
between the wall plug and the appliance to reduce installation complexity. Wireless
communication between plugs would lower the complexity of the setup and would
reduce the need to install more cables throughout the home. For safety reasons,
an electrician would be required to install house-level smart meters, therefore the
technical knowledge required could be somewhat increased. The sampling frequency
for both appliance-level and home-level meters should be at least 1 Hz, as this rate
is being used by a large number of algorithms already, following the suggestion of
Klemenjak, et al. [Klem 19] for macroscopic datasets. Higher sample rates increase
the data handling complexity as it needs to be kept in mind that doubling the sample
rate will also double the data volume that needs to be handled. Collected data should
be stored on a small on-premises computer. The overall cost should be kept as low
as possible.

https://DEDDIAG.github.io
https://github.com/DEDDIAG/DEDDIAG-loader.git
https://github.com/DEDDIAG/DEDDIAG-loader.git
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Figure 5.1: Diagram showing detailed client-server components and data flow of
the developed domestic energy measurement system. The Raspberry Pi (Client) is
installed in the household collecting measurements of the meters. Data is persisted
locally and automatically uploaded each hour to a central server using the household’s
internet connection. [Wenn 21b], License: CC-BY 4.0

Software Development Requirements

The software system would need to be able to read the measurements from appliance-
and home meter and store it on an on-premises computer. The users would be
provided with a web interface where they can monitor real-time meter values. All
local data (client) are to be uploaded hourly to a centralized server over the internet.
The uploads should be self-healing, meaning the upload system needs to be robust
against a broken internet link, aborted/partial uploads, and server downtime.

With a limited overall time for building and using the monitoring system, the goal
was to measure as early in the project as possible, meaning the system was installed
in the homes as early as possible. Therefore the system was developed in a Minimum
Viable Product (MVP) fashion. As the project team did not have direct physical
access to the homes, which were distributed throughout the south of Germany, the
software needed to be updated automatically for the shipping of bug fixes and new
features. For security reasons it is required to avoid direct network access to the
households’ network, thus having the system update autonomously by providing a
new software version on a server.

5.2.2 System Architecture
Based on the requirements listed above, the following system architecture was de-
signed (cf. Fig. 5.1). All components on the server and client are designed as mi-
croservices and run as containers using Docker (https://www.docker.com). This
allows for a guaranteed software state on each client and also provides a simple up-
date mechanism.

Server-Side

The server side provides three main functionalities: Data storage including secure
upload, visualization, provide software updates, and monitoring. For data storage a
PostgreSQL (https://www.postgresql.org) database is used, an open-source rela-
tional database that provides a rich set of query functionality. The measurements

https://creativecommons.org/licenses/by/4.0/
https://www.docker.com
https://www.postgresql.org
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Figure 5.2: Entity relationship model of server-side data storage. [Wenn 21b], Li-
cense: CC-BY 4.0

of all homes and appliances are stored in a single table. In the following, all mea-
surement sources, i. e. appliance or smart-meter phase, are called item. Each item is
identified by a unique ID that is assigned on the first upload of measurements to the
server. All measurements are stored in a database scheme as shown in Fig. 5.2, where
all measurements are stored in a single table with a foreign key to an item’s table.
The item’s table contains the assigned unique ID as well as metadata such as the
item name and which household it is installed in. An alarm system was implemented
that informs the residents in case there was no new data uploaded within the last 6
hours.

A visualization was implemented as a responsive Graphical User Interface (GUI)
using Angular∗. It provides an overview of all collected data as shown in Fig. 5.3. An
overview of all houses includes the date of the first and last recorded measurements
to provide a quick check for newly added houses or check on upload failures. For
each house, a details view of each appliance was added which also listed all manual
usage annotations as explained in the following Section 5.2.3. A visualization tool
that includes plotting of the recorded data helps to identify false readings.

As server-side hardware we used an Intel Xeon Gold 6140 CPU @ 2.30 GHz with
256 GB RAM. Such powerful hardware is generally not required but increases SQL
query speed when a large number of measurements are recorded. It must be noted
that in order to utilize the hardware power, the PostgreSQL instance needs to be
configured to allocate more memory per query. The server requires an internet link
capable of handling the uploaded data of about 140 KB per appliance per hour which
is insignificant compared to the required download capabilities for daily backups as
well as large queries that require gigabytes to be transferred as fast as possible, and
we therefore made use of a 1-Gbit internet link.

∗https://angular.io/

https://creativecommons.org/licenses/by/4.0/
https://angular.io/
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(a) All Houses (b) Details of House 1

(c) Details of dishwasher in House 1 (d) Visualization of dishwasher in House 1

Figure 5.3: Responsive web GUI implemented as part of the central energy server.
The tool gives an overview of all collected data including (a) an overview of all houses,
(b) detailed view of all appliances in each house, (c) detailed view of an appliance,
and (d) a visualization of the collected data.
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Home-/Client-Side

The hardware components used for each home are:

• computer: Raspberry Pi 3 Model B with 32 GB storage,
• WiFi Access-Point: TP-Link TL-WR802N,
• individual appliance meter: TP-Link SmartPlug HS110 (see Fig. 5.4(c)),
• whole-house meter: ABB B23 112-100 + MAX485 module (see Fig. 5.4(d)),
• 5V DC power supply.

For the on-premises computer a Raspberry Pi 3 Model B with 32 GB storage with a
standard casing (see Fig. 5.4(b) was used. It offers WiFi, Ethernet, and GPIOs for
Modbus communication with a whole-house meter at a very low cost. In cases where
a whole-house meter was installed, a DIN rail casing as shown in Fig. 5.4(a) was
used to mount the Pi next to the meter since reading data using Modbus requires
a cable connection. The full system was pre-configured in our lab, which reduced
the steps required for installation by the residents in each home to: Plugging in
individual appliance meters and Raspberry Pi, and connecting the Access-Point to a
local router. This also allowed us to ship the system as a package without requiring
an electrician when only appliance data was collected (i. e., no whole-house meter
installed).

The computer runs Hypriot OS (https://blog.hypriot.com), a slim operat-
ing system that focuses on Docker container support. We made use of the Eclipse
Smarthome (https://github.com/eclipse-archived/smarthome) system for col-
lecting and persisting the data locally into a PostgreSQL database. The appliance
meters are read over the wireless network every second, where the timestamp is added
at the time the value is received from the meter, thus introducing a reading latency
equivalent to the response time of the device plus network latency. The system time
is set using the NTP protocol. In order to keep the 1 Hz rate, the next value reading
request will take this latency into account. Readings are persisted only on value
change to minimize storage space. Additionally, one value is always stored at the full
hour in order to detect connectivity problems.

Each hour the new data is exported into a CSV file and uploaded to a central
server using SSH with key authentication. In order to identify incomplete uploads on
the server side, the SHA checksum was used as a filename and checked before import
on the server side.

5.2.3 Event Annotations
The collection of raw data is an important step of all electricity machine learning
efforts as it can act as ground truth. For some applications such as appliance usage
analysis, the raw electricity measurements are only one part of the required ground
truth, as electricity consumption does not necessarily correlate with usage. Appli-
ances with a stand-by mode still have an electric load when not in use. While the
BLUED [Ande 12b] dataset does provide ground truth event annotation, the dataset
cannot be used for tasks such as user behavior analysis as the recorded period is only
about 12 hours.

https://blog.hypriot.com
https://github.com/eclipse-archived/smarthome
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(a) DIN rail (b) Standard (c) Smart Plug (d) Smart Meter

Figure 5.4: Images of the different Raspberry Pi cases, a smart plug, and a smart
meter used. (a) was to be used for mounting on a DIN rail next to a whole-house
meter, and (b) for all other setups. The smart plug (c) was used to record the
appliances and the smart meter(d) was used to record the mains [Wenn 21b], License:
CC-BY 4.0

Pereira [Pere 19] takes the annotations from BLUED, adds manual annotations
to the UK-DALE [Kell 15] dataset, and combines the results into a new event anno-
tation dataset called NILMPEds [Pere 19]. In the NILM context, events are usually
defined as switch-on or -off using a single timestamp. These two events have a logical
relationship as a switch-on/start must be followed by a switch-off/stop. We, there-
fore, publish manual annotations for some of our data where an event is defined by
two timestamps: e0 = (t0, t1) where t0 < t1. Manual annotations were created using
expert knowledge. For this purpose, an annotation tool has been implemented as
part of the central energy server’s GUI (see Fig. 5.5) The tool allows multiple people
to annotate data at the same time.

Figure 5.6 shows manual annotations of the compressor and light for a refrigerator
in house 5. The measurements in the annotation tool have been rounded to full
seconds using the provided SQL function round_timestamp(), and the annotations
are therefore created to full seconds.

5.3 Dataset

The DEDDIAG dataset was mainly recorded to provide the basis for automated
domestic load-shift applications where, e. g., a Real-Time-Price is used as an incen-
tive. Hence, the dataset contains appliances that have the potential for automated
load-shifting such as fridges, freezers, dishwashers, dryers, and washing machines.
According to the German Federal Environment Agency, other applications, outside
of space heating and cooling, such as washing machines, dryers, stoves, refrigerators,
and similar, account for 52.6% of a household’s electricity demand in 2018 [Germ 20].
It is less common to use electricity-based space heating, and therefore space heat-
ing accounts only for 5.8%; space cooling systems are generally uncommon and only
account for 1.0% [BDEW 19]. In some cases additional appliances that may not
contribute to load-shifting were recorded as they give insight into habits. We find
it particularly important to provide annotations for appliance usage in the form of
Start-End annotations that attribute a certain time span to a label. For instance, on
a washing machine, this is the cycle start and end combined with the program used;

https://creativecommons.org/licenses/by/4.0/
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Figure 5.5: Annotation tool that was implemented as part of the central energy
server where data was collected from different households.

for a fridge, this highlights the compressor cycles as well as the light that indicates
an open fridge door. The latter is especially interesting as it gives a clear indication
of an occupant being present.

This is why, in the DEDDIAG dataset, not only the raw data was published,
but also manual annotations, demographic information, and model names for some
appliances to provide a basis for research of device identification, behavior analysis,
and load-shift recommendation systems.

Data Records

The DEDDIAG dataset provides raw 1 Hz power readings of load-shifting relevant
appliances over periods of 21 to 1351 days. For one home (house 8) we also provide
whole-house mains readings. In total, the dataset contains 15 homes with a total of
50 appliances. A detailed listing of all homes and appliances, duration, and missing
data can be found in Table A.1.

Figure A.1-A.4 show stacked daily average consumption for all houses. The
aligned charts show the periods the data was recorded and can be used for visual
examination of missing data or analyzing seasonal changes where, e. g., refrigerators
require more energy during summer periods.

For 14 cycle-based appliances DEDDIAG provides manual annotations. These
annotations provide start and stop timestamps of a cycle; there are multiple labels
per appliance where possible in order to annotate different modes. For example, for
the refrigerator with item ID 10 in house 0, we provide separate annotations for light
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Figure 5.6: Measurements (blue curve) and annotations (light grey) of a refrigerator
(House 5/Appliance 09) showing annotations for compressor and light cycles over
a period of 1.5 hours on the 2016-08-17. Compressor and light are annotated as
separate events in order to classify user interaction (door opening) by using the light
annotations.

and compressors. Thus, the annotations can be used as ground truth for appliance
usage predictions which, to our best knowledge, does not exist for any long-term
electricity dataset available. This will allow training and evaluation of classifiers that
can detect “usage” of the refrigerator based on the light being switched on when
the door is opened. Additionally, we provide demographic data for each household’s
residents such as age, absence duration, and regularity of absence. The DEDDIAG
dataset is open-access and is hosted on Figshare [DEDD 21].

Structure
All data are provided as plain text, tab-separated value (TSV) files. Figure 5.7 shows
the dataset file structure. There is one directory per house (house_00/, house_01/,
. . . ) containing a house.tsv file with the house description. The description pro-
vides demographic data such as the number of residents, their age, regularity of ab-
sence, and normal absence duration. Appliances metadata is provided in items.tsv,
containing a unique ID, name, device category, and house ID. Appliance categories
provide a grouping label. Available categories are Refrigerator, Freezer, Washing Ma-
chine, Dryer, Dish Washer, Coffee Machine, TV, Office Desk, Smart Meter Phase,
Smart Meter Total, and Other.

The measurements, annotation, and annotation labels of each appliance are pro-
vided in separate files: item_XXXX_data.tsv.gz, item_XXXX_annotations.tsv,
item_XXXX_annotation_labels.tsv. The measurement files are each compressed
using gzip to reduce size. The data is split per house and appliance to make it pos-
sible to work on a single home or appliance. While the tsv files can easily be used
directly, an import bash script called import.sh is provided to automatically im-
port the data into a Docker-based PostgreSQL database. Detailed instructions are
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/
house_00

house.tsv ....................................... House description
items.tsv..................................Appliance descriptions
item_0001_data.tsv.gz......................Power measurements
item_0001_annotations.tsv............................Annotations
item_0001_annotation_labels.tsv..............Annotation labels
item_XXXX_data.tsv.gz
item_XXXX_annotations.tsv
item_XXXX_annotation_labels.tsv

house_XX
...

import.sh ............................................... Import script
create_tables.sql...................Database tables and functions
README.md........................................Dataset description

Figure 5.7: Dataset directory structure. Each appliance is provided in a separate
file in order to simplify only using a subset of appliances.

provided as part of the dataset archive in README.md. The compressed dataset has
a size of 14 GB, and the uncompressed, imported data requires about 140 GB. All
measurements are stored in a sparse manner where only value changes are recorded.
In order to be able to detect connectivity problems of the metering device, there is
at least one reading per hour. Therefore, if the time span between two measure-
ments is greater than 1h 5sec, it should be assumed that there are missing values.
A measurement record is stored as <item_id> <time> <value> where <item_id>
corresponds to an ID in items.tsv. <time> is a UTC datetime string using the
YYYY-MM-DD HH:MI:SS.US format, measurements are stored as float values.

Annotations are provided as <id> <item_id> <label_id> <start_date>
<stop_date> where start, stop are UTC datetime strings using the
YYYY-MM-DD HH:MI:SS format. Annotations are only provided to full seconds, thus
the corresponding measurement can be found using the provided custom SQL func-
tion round_timestamp().

5.4 Validation

All parts of the data collection system have been tested in a lab environment. The col-
lected measurements are captured as provided by the metering device. The mains me-
ter is certified to be MID (Measuring Instruments Directive) calibrated, the appliance-
level meters are not. A lab test on the wireless appliance meter devices has been per-
formed to assure constant readings over different metering devices. Another lab test
has been performed to compare readings of the appliance and mains meters, showing
that the appliance meters systematically provide 2% to 4% lower readings compared
to the mains meters.
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Table 5.1: Comparison of available data of item 69 and 4 as an example for miss-
ing data caused by interruption of the monitoring. The table shows how much of
the missing data is of a certain length, illustrating the differences in missing data.
89.3% of the missing data of item 69 come from interruptions > 5 days, meaning
there are mostly long-term interruptions. 50% of missing data on item 4 come from
interruptions > 2 days, meaning there are mostly short-term interruptions.

Gap Length Item 69 Item 4
> 1 hours 100.0% 100.0%
> 2 hours 100.0% 97.5%
> 3 hours 100.0% 94.5%
> 4 hours 100.0% 92.7%
> 5 hours 100.0% 92.4%
> 6 hours 100.0% 92.2%
> 1 days 97.4% 82.9%

> 1 days 12 hours 97.4% 64.4%
> 2 days 97.4% 50.0%
> 3 days 97.4% 12.6%
> 4 days 94.0% 3.9%
> 5 days 89.3% 0.0%
> 33 days 34.0% 0.0%

Sample Rate Precision
Although there is one reading per second, the exact rate varies due to the technical
limitations of the metering device. For single appliance measurements, the rate will
usually fluctuate between 0.9 Hz and 1.1 Hz. The timestamp precision is sub-second,
rounding to full seconds may result in having two measurements for the same second.
The recommended handling for such cases is to only keep the later value to avoid
changing the time order of the two values, since this may introduce a significant error
considering only value changes are recorded.

Missing Values
There are missing values within the dataset. In order to be able to detect failures,
the system recorded at least one value per hour per appliance, and therefore time
gaps that are greater than 1h 5sec must be treated as missing values. The additional
5 seconds are added as a fair dealing gap because small deviations from the 1h are of
no significance as these gaps only represent periods where the electricity demand has
not changed, which in reality only applies to 0 Watt cases. An overview of monitoring
gaps is given in Table A.1 as the sum of missing periods relative to the total duration
with a gap size of >1h 5sec and >1day, where the latter must always be smaller. The
>1h 5sec missing data ranges from 0.28% on item 38 to 59.40% on item 4, and the
>1 day missing data ranges from 0.00% to 49.26% for the same appliances.

As an example Table 5.1 provides a more detailed insight into monitoring gaps
of item 4 and item 69 that have an overall > 1h 5sec missing data of 59.40% and
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Table 5.2: Listing of published data and source code. All source code is published
under MIT license, the data and publication under CC BY 4.0.
Dataset on Figshare CC BY 4.0 http://dx.doi.org/10.6084/m9.figshare.13615073 [DEDD 21]
Scientific publication CC BY 4.0 https://rdcu.be/coGqL [Wenn 21b]
Python loader MIT https://pypi.org/project/deddiag-loader/
Collection system MIT https://DEDDIAG.github.io
NILMTK converter MIT https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset_converters/deddiag

35.06%. The items were chosen as an example since they have very different missing
data patterns. The table shows how much of the missing data falls within a certain
gap length, clearly indicating that item 69 suffers from long-term interruptions where
89% of the missing data are from gaps > 5 days where there is no gap of that length
for item 4. Item 69 has a single monitoring gap of about 33 days, accounting for 34%
of its missing data, while the largest gap for item 4 is 4 days.

As the analysis as well as the impacts of the missing data depend on the appli-
cation of the dataset, detailed inspections of missing data must be performed when
using the dataset. The DEDDIAG-loader software library described in Section 5.5
provides a method to find missing periods to assist analysis. Missing data can also
be seen visually in the daily average power demand, Figs. A.1–A.4.

5.5 Availability

The dataset as well as all described software components have been published on-
line. An overview is given in Table 5.2. The full data collection system is pub-
lished under MIT license and is available under https://DEDDIAG.github.io. The
dataset itself is published as tab-separated text files together with code to import
all data into a PostgreSQL instance. An SQL function called get_measurements
() is provided to get seconds-based measurements, where readings are converted
from value-changes to seconds-based readings using interpolation; timestamps are
rounded to nearest seconds. There is also a python package available https://
github.com/DEDDIAG/DEDDIAG-loader.git that assists in retrieving data into a
pandas-DataFrame/numpy-array. The package∗ has also been uploaded to https:
//pypi.org and it can be installed using the package-management system pip: pip
install deddiag-loader

Additionally, the dataset has been added to the largest available NILM toolkit,
known as Non-Intrusive Load Monitoring Toolkit (NILMTK)†. The parser is mainly
created for house 8, where aggregated main readings are available. NILMTK is a
python toolkit containing parsers for multiple electricity datasets and implementa-
tions of common energy disaggregation algorithms [Batr 14a, Kell 14, Batr 19].

∗https://pypi.org/project/deddiag-loader/
†https://github.com/nilmtk/nilmtk

http://dx.doi.org/10.6084/m9.figshare.13615073
https://rdcu.be/coGqL
https://pypi.org/project/deddiag-loader/
https://DEDDIAG.github.io
https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset_converters/deddiag
https://DEDDIAG.github.io
https://github.com/DEDDIAG/DEDDIAG-loader.git
https://github.com/DEDDIAG/DEDDIAG-loader.git
https://pypi.org
https://pypi.org
https://pypi.org/project/deddiag-loader/
https://github.com/nilmtk/nilmtk
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5.6 Summary
This chapter introduced a new data collection system and the resulting new dataset
with ILM research in focus. No open-source collection system has been previously
available that fulfills all requirements for such a task. Since the system is published
as open source and only uses open-source components, it can potentially be extended
for further research. Possible extensions are the implementation of Machine Learning
Demand Response Model (MLDR) components in order to provide actions that can
either be operated automatically or by eliciting customer feedback.

The obtained and published dataset called DEDDIAG has some unseen properties.
The collected dataset gives insights into German households and covers a long time
period, ranging from 1–3.5 years. Furthermore, it includes manual annotations of
appliance switching-events, providing ground-truth for appliance segmentation and
usage predictions. A list of public datasets, including this one can be found in Section
4.1.3.
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Substantial parts of this chapter’s Section 6.3 have been published in the following
manuscript: [Wenn 21b]. Substantial parts of the Section 6.4 have been published
in the following manuscript: [Wenn 21a]. The majority of the manuscript has been
authored by the author of this thesis. The main scientific contributions are based on
his own work and thoughts.

6.1 Introduction
Appliance identification comes in various shapes. It is referred to as appliance identi-
fication, appliance recognition, appliance classification or appliance event detection.
The identification is done in two steps, a pre-processing step, where features are
extracted, followed by the actual identification task.

As mentioned in Chapter 4, the difficulty of these tasks depends on the input
data. For Intrusive Load Monitoring (ILM) 3 data, where the data points are not
an aggregate of multiple appliances, each data point belongs to a distinct category,
whereas on the other hand in Non-Intrusive Load Monitoring (NILM) and ILM 1/2,
a data point belongs to a set of appliances, thus to a set of categories.

In the NILM context, the identification and segmentation is sometimes seen as
a single step, as the device identification is done based on the characteristics of the
appliance’s switching events [Froe 11]. Following the Machine Learning Demand Re-
sponse Model (MLDR) described in Section 4.4, here the identification and segmen-
tation are treated as a two-step process. The segmentation step is further discussed
in Chapter 7.

In machine learning terms, the determination of the appliances m is a classification
problem. Since the data points are recorded chronologically, appliance identification is
a time-series classification problem. Appliance identification is the task of associating
the temporal data points with an appliance category (Dishwasher, Refrigerator, Office
Desk, . . . ), a manufacturer, or the appliance’s model. Further, the data points belong
to a specific mode or state the appliance is currently in. The result is an association of

67
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temporal data points with a specific class m, where m ∈ {1, . . . , M}. This association
is performed using a classifier.

For simplicity, the term appliance identification is defined as the task of identifying
the appliance category.

The available appliance identification techniques can be divided into two main
categories: low and high sample rate approaches. In the following low sample rates
are defined as <100 Hz and high sample rates as >100 Hz. Although the 100 Hz is
equivalent to double the common utility frequency in Europe 2×50 Hz, which would,
in theory, satisfy the Nyquist–Shannon sampling theorem of fsample > 2fmax, the
boundary is set based on typically used sampling rates. Taking harmonic distortion
into account (see Section 4.2.2), fmax is far above the utility frequency of 50 Hz,
thus high sample rate approaches require sample rates in orders of magnitude higher
(kHz).

6.2 Related Work

6.2.1 Low Sample Rate
Zaidi et al. investigated the use of templates of power consumption profiles which
are used to match new readings using Dynamic Time Warping (DTW) [Zaid 10]. Ad-
ditionally, they investigate building a Hidden Markov Model (HMM) to identify loads
based the consumption profiles. The profile is made up of features such as average
energy consumption, edge counts, and percentage energy consumption. The use of
Discrete Fourier transformation (DFT) coefficients was also tested, but not deemed a
relevant feature due to “the mostly permanent character of loads with no or very less
transitions” [Zaid 10]. Their work was discussed on a nonpublic dataset recorded at
a sample rate of 1/10 Hz and includes appliances such as Fridges, Microwaves, Dish-
washers, Coffee Machines, Computers, and Printers. Unfortunately, the publication
does not present an evaluation based on performance metrics.

Weiss et al. present a NILM appliance identification based on edge detection and
load profile matching [Weis 12]. They propose a multi-step process: normalization,
edge detection, power and delta level computation, load profile matching. The se-
lected input feature is apparent power S. The edge detection is based on the abso-
lute value change in the apparent power signal. Potential edges are filtered using a
single, lower-bound threshold. The authors tested smoothing the signal to remove
unwanted edges using different filters such as a median filter, a mean filter, and a
kernel-weighted average filter (Nadaraya-Watson filter with Gaussian kernel). They
conclude that using a large Gaussian kernel gives the biggest reduction in potential
edges, while not missing the wanted edges. The described edge detection falls in the
category of switching events, and the authors pair the ON/OFF events. Based on the
found switching-event pairs a feature matrix is created containing the step-up and
step-down signature and the start and end. The authors search for matching signa-
tures in the database using a nearest-neighbor algorithm. The described approach
inverts the classification and segmentation steps in the MLDR by first finding the
load profile γ, before identifying the appliance type. As discussed in Section 4.2.3,
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and illustrated in Fig. 4.9, such edge-detection algorithms can be insufficient for many
appliance types due to the nature of their load profile.

Reinhardt et al. present an ILM appliance identification approach based on mul-
tiple power features [Rein 12]. The authors use an empirically determined single lower
bound threshold approach to detect switching events. Based on the segmented appli-
ance cycles, time-related and power consumption-related features are extracted. The
time-related features, usage time, usage frequency, and total usages, are extracted
as well as day- and week-based features. A feature representing the common us-
age time of the day is created by dividing each day into 144 bins, forming a vector
where each scalar presents whether the appliance has been active or not. Addition-
ally, a similar vector indicates the usage during weekdays or weekends. Next to the
time-related features, power-related features such as maximum power consumption,
average power, average variance, and power levels (5, 10, 50, 200, 500, and 2,000
watts) are used. Furthermore, noise level and statistical features are also considered.
The noise or high fluctuations are described by comparing a low-pass filtered curve
with the original. The extracted features are the number of points of inflection and
the value of the first minimum. In total, 517 different features are used to describe
each power consumption trace in the dataset. Using 25-fold cross-validation, nine
different classification algorithms have been evaluated: Bagging, Bayesian Network,
J48, JRip, LogitBoost, Naive Bayes, Random Committee, Random Forest, and Ran-
dom Tree. The resulting accuracies range from 84.21% to 95.5%, where JRip gives
the worst and Random Committee the best result.

Single appliance recordings were used to evaluate the approach. These recordings
have been published under the name tracebase. The data were recorded at a sample
rate of 1/3 Hz over a period of 24 hours.

Ridi et al. describe an ILM approach based on power features and the derived
delta and delta-delta coefficients [Ridi 13]. The features used are the measured real
power P , the reactive power Q, the root-mean-square (RMS) current I, the RMS
voltage V , the electric frequency f , and the phase ϕ. Additionally, the delta and
delta-delta coefficients of all observations O = (o1, o2, . . . , oN) are calculated. The
delta features are calculated as:

∆on =
K∑

k=−K

kon−k , (6.1)

where the window length equals (2K + 1) [Henn 98]. The delta-delta coefficient is
defined as:

∆∆on = ∆on+1 − ∆on−1 . (6.2)

The final feature vector is composed of the z-normalized original measurements O
and the computed coefficients delta and delta-delta. The authors evaluate the per-
formance of two different classification algorithms, Gaussian Mixture Model (GMM)
and k-Nearest-Neighbor (kNN), on the Appliance Consumption Signature-Fribourg
1 (ACS-F1) dataset [Gisl 13]. This dataset is sampled at 1/10 Hz and contains one-
hour readings from 10 different appliance categories. In total, two sessions of 100
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appliances have been recorded. The authors present their performance evaluation
using a confusion matrix as well as accuracy. The best overall performance, with an
accuracy of 93.6% was obtained using the GMM, while the kNN achieved an accuracy
of 90%. They conclude that the delta and delta-delta features improved the accuracy,
although on the kNN classifier, the accuracy only improved by 2 percentage points.

6.2.2 High Sample rate
Saitoh et al. proposed an identification approach evaluated using 4.44 kHz data
[Sait 10]. The proposed method contains three pre-processing steps: phase shift align-
ment, feature extraction, and normalization. The phase alignment is done by finding
the first peak value in the voltage signal and shifting the signals to the left, so the
measurement starts at the maximum. From the current signal, the authors extract
three features from a single cycle: the maximum (Ipeak), average (Iavg), and RMS cur-
rent (Irms). Based on these features, three derived features are calculated: CF = Ipeak

Irms
,

FF = Irms
Iavg

, and Fpta = CF · FF = Ipeak
Iavg

. Additionally, the rising and falling edge angle
of the voltage signal as well as two ratios that describe the proportion of the values
in one cycle being above 0.1 · Ipeak and 0.8 · Ipeak are used. These 10 features form the
final feature vector that is classified using two different classifiers: Support Vector
Machine (SVM), and kNN. The kNN has been tested using k = 1 and k = 3. The
authors found no significant difference between the classifiers in their evaluation, and
that Irms, Iavg, and Ipeak are the most significant features.

De Baets et al. propose a method based on voltage-current (V-I) trajectory fea-
tures classified using a Convolutional Neural Network (CNN) [De B 18b]. Their
method used the voltage and current signature when the appliance is in steady-
state and create the normalized V-I trajectory as a 2-dimensional, binary-image-
like, matrix. This matrix is fed into a CNN which outputs the appliance category.
Their approach has been evaluated on two public datasets: COOLL and WHITED
[Pico 16, Kahl 16]

Faustine et al. proposed a method similar to De Beats et al., which is based
on classifying the Recurrence Plot (RP) of the V-I trajectory using a CNN [Faus 20,
Faus 21]. This very recent approach is the basis for the algorithm presented in Section
6.3, where a more detailed description is provided.

6.3 A Low Sample Rate k-Nearest Neighbor Method
An appliance identification algorithm must be capable of identifying an appliance
category (Fridge, Dishwasher, . . . ) based on the available data. In low sampling rate
scenarios (<100 Hz), only power-based approaches have been developed, as all other
features such as harmonics are only observable at high resolution. At low sample
rates, the measurements are averaged, commonly using the RMS value (cf. Section
4.2.2). A few publications have been made using different classification algorithms,
all based on power features (cf. Section 6.2.1).
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In the following, a power feature-based appliance identification is presented. The
method was developed for the Domestic Energy Demand Dataset of Individual Appli-
ances in Germany (DEDDIAG) dataset, working on measurements recorded at 1 Hz
sample rate [Wenn 21b].

The appliance identification task requires boundary definition by formalizing the
goal of the task. In the DEDDIAG dataset, some appliances have been recorded
for up to 3.5 years. With real-world scenarios in mind, the goal for an appliance
identification task cannot be to identify an appliance based on all available data, but
rather on a window that is as small as possible. It would be preferable to reduce the
required data points to a few minutes. Further, the identification is based on ILM 3
data (single appliance recordings).

6.3.1 Method
The classification process contains two steps: data pre-processing/feature extraction
and classification. Since the task is performed on power measurements, the input
data will be the raw measurements as available in the DEDDIAG dataset. These raw
measurements are the RMS power for each appliance. The pre-processing step is com-
posed of a feature extraction based on a sliding window. The appliance identification
task is performed on all available appliances using the non-aligned recordings, mean-
ing that the classifier has to be able to perform on a randomly chosen segment. The
sparse recorded data is taken as is, which prevents trying to classify high-duration
switched-off states where the power demand is 0 watts. Each window is classified
independently, testing the influence of input data length on the classification result.
Multiple experiments are performed to evaluate different feature extraction and clas-
sification methods.

Feature Extraction

A single long time-series needs to be split from the other series for classification.
A sliding window approach as shown in Fig. 6.1 is used to cut the time series into
smaller parts. Each window is then used as the input for the classification task,
thus the window represents the portion of the signal that is required to identify the
appliance. The window sizes ws used for the evaluation are defined as:

ws = 2x, x ∈ [2, 11] . (6.3)

Based on the sliding windows, a feature vector is formed using the windows mean
value and Discrete Wavelet Transformation (DWT) coefficients. The DWT is per-
formed to the maximum level, resulting in four coefficients per window. Combined,
this results in a five-dimensional feature vector, which is normalized and standardized
independently based on the training data.

Mean Value is simply defined as the mean of each window:

1
ws

ws∑
n=1

windowsn . (6.4)
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[ 1, 3, 8, 1, 7, 3, 5, 1, 5, 6, 7, 4, 2 ]

[ 1, 3, 8, 1, 7, 3, 5, 1, 5, 6, 7, 4, 2 ]

[ 1, 3, 8, 1, 7, 3, 5, 1, 5, 6, 7, 4, 2 ]

window size = 5

step size = 3

Figure 6.1: Sliding window over a sample time-series sequence. The blue box defines
a window. The window size defines the number of values per window taken from the
sequence. The step size defines the number of values jumped between each window.
When step-size < window-size, the windows are overlapping.

Discrete Wavelet Transformation is a mathematical decomposition of a discrete
signal into a set of coefficients describing the signal. The decomposition is done using
a wavelet, a wave-like oscillation that is localized in time. The advantage of DWT
over the Fourier transformation (FFT) is the temporal resolution: the DWT reflects
the time evolution of the frequency. The wavelet transformation was first introduced
by Grossman et al. [Gros 84].

A wavelet theory is commonly described as the representation of a square-integrable
function on R by small, square-shaped series that must decay to zero [Flee 08]. A
discrete wavelet transform of a signal f is calculated by convoluting the wavelet Ψ
over f :

yt =
N−1∑
k=0

ft−kΨk , (6.5)

where Ψ is zero, expect a finite integer range. The most common wavelets are known
as Daubechies wavelets, named after the mathematician Ingrid Daubechies [Daub 88].
In this thesis, the Daubechies wavelet 1 (db1) is used, which corresponds to the Haar
wavelet, defined by the wavelet function Ψ as:

Ψ(t) =


1 0 ≤ t < 1

2 ,

−1 1
2 ≤ t < 1,

0 otherwise.
(6.6)

In order to obtain the so-called detail coefficients and approximation coefficients,
the resulting vector y is processed using a high-pass filter h and low-pass filter g.
This combination of a high- and low-pass filter is called filter bank [Flee 08]. Since
each filter outputs half the frequency band of the input y, the resulting vector can
be sub-sampled by 2, resulting each in half the vector length of y. Repeating this
decomposition on the low-pass filtered results, multiple decomposition levels are ob-
tained.

The multi-level decomposition has a signal compaction and noise reduction prop-
erty while being computationally efficient. These properties are desired from a ma-
chine learning point of view, as any dimension reduction will decrease the complexity
of the classification task. The decomposition iterations can be performed until the
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signal becomes shorter than the length of the interval the filter is defined. The max-
imum level of decomposition is therefore defined given by:

lmax =
⌊
log2

|f |
|Ψ| − 1

⌋
, (6.7)

where |f | is the length of the input vector f , and |Ψ| the length of the filter. For the
here used wavelet db1, |Ψ| = 2. In the presented evaluation, the decomposition is
always performed to lmax −1. On window sizes defined as in (6.3), the decomposition
to the maximum level results in one detail coefficient and approximation coefficient
each, thus lmax − 1 will result in two coefficients each. Thus, the number of features
is independent of the used window size.

Classification

The DEDDIAG dataset has appliances from nine different categories: Coffee Machine,
Dishwasher, Dryer, Freezer, Office Desk, Other, Refrigerator, TV, and Washing Ma-
chine. The classification is performed using the kNN algorithm, a very robust and
commonly used classifier with the capability of separating non-linear class boundaries
based on a distance metric. In this evaluation, the separation is performed based on
5 neighbors using the Euclidean distance.

6.3.2 Evaluation
The evaluation of the classification approach requires to splitting the recorded data
into a training and test set. The available data for each category are a set of different
appliance recordings. The main challenges when using the data are:

• Different number of data points available per category,

• Different number of data points available per appliance,

• Different number of appliances per category.

These challenges are overcome by using the following evaluation principles:

• Limit the number of used data points. For the DEDDIAG dataset 5.000.000
points per appliance are used. This corresponds to a time range of about 58
days per appliance.

• Use an equal amount of data per appliance in each category by dividing the
per-category data point limit by the appliances in each category.

The data extracted in this manner is then evaluated using k-fold cross-validation.

k-fold cross-validation

k-fold cross-validation is a popular data split procedure for the performance evalu-
ation of different classification algorithms. The procedure divides a dataset into k
disjoint folds of equal size, where k > 1. k − 1 folds are used as the training set, and
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the remaining fold is used as the testing set. Each fold will act once as the testing
set, resulting in k different evaluations. The result of each fold is then commonly
averaged over all folds.

Cross-validation on long-time series data is not trivial. A scenario, where the data
of each category originate from different appliances, requires a sophisticated splitting
approach, especially in combination with sliding windows. In an example with two
categories C = {C0, C1}, the data vectors are of the following format:

C0 = [(a1, a2, a3, . . . , aN), (b1, b2, b3, . . . bN)] , (6.8)
C1 = [(c1, c2, c3, . . . , cN), (d1, d2, d3, . . . , dN)] , (6.9)

where {a, b, c, d} are the data points of different appliances and N the number of
recordings for a given appliance. Here, for simplification N is assumed to be the
same for each appliance. In reality, this may not be the case and each appliance or
category has a different number of recordings per appliance.

The data is split into k parts so that each fold contains data from every appliance
in each category as well as every category. This is done by splitting each appliance
in each category separately into k folds:

C0 = [((a1, a2, a3), (a4, a5, a6)), ((b1, b2, b3), (b4, b5, b6))] , (6.10)
C1 = [((c1, c2, c3), (c4, c5, c6)), ((d1, d2, d3), (d4, d5, d6))] , (6.11)

where k = 2, and N = 6 thus resulting in two splits per appliance with 3 values each.
Based on this split, each fold F will therefore result in a feature vector as follows:

F0 = [(a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3)] , (6.12)
F1 = [(a4, a5, a6), (b4, b5, b6), (c4, c5, c6), (d4, d5, d6)] . (6.13)

In the first iteration, F0 is the training set F1 as the testing set and vice versa in
the second iteration.

In a sliding window-based approach, the windows have to be created indepen-
dently for each element (appliance) data in F . Otherwise, artifacts would be created
on the edges between appliances, e. g., between a and b, resulting in windows con-
taining values of two appliances: (a3, b1). Thus, for windows size ws = 2 and a step
size of 1, the final data vectors in F0 and its corresponding category vector (labels)
L are:

F0 = [(a1, a2)(a2, a3), (b1, b2), (b2, b3), (c1, c2), (c2, c3), (d1, d2), (d2, d3)] , (6.14)
L0 = [0, 0, 0, 0, 1, 1, 1, 1] . (6.15)

In the following experiments, the evaluation is performed using k = 5, window
sizes ws = 2n with n ∈ [2, 11], and step size 3.
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Results

Evaluation results are presented in three different ways:

• boxplot in Fig. 6.2 combining results of all folds at all window sizes,

• confusion matrix in Fig. 6.3 showing the changes in misclassification at different
window sizes,

• detailed results in Table 6.1 show the F1-score per class and the average over
all classes for tested window sizes.

In general, the results indicate that the F1-score increases with increasing win-
dow size, which means that although the number of features presented to the kNN
algorithm are independent of the window size, the extracted window features con-
tain more distinct class boundaries when using a larger window size. An analysis
using the boxplot indicates three main differences in the classification performance.
An explanation of the boxplot and interquartile range (IQR) can be found in Sec-
tion 3.5.7. The Coffee Machine category has the smallest IQR and the Dishwasher
the largest. All others have similar IQR, although TV and Washing Machine have
a few poorly performing outliers, indicated by the rhombus-shaped dots. The best-
performing category at large window sizes is the Freezer, with a maximum score of
0.9551. The Coffee Machine category performs very well at all window sizes. This is
indicated by an overall narrow distribution of the results, indicated by a small IQR
and short whiskers. Detailed results table shows that even at ws = 4 an F1-score of
0.9204 is achieved, peaking at ws = 128 with an F1-score of 0.9487. The Dishwasher
classification performance is by far the most dependent on large window sizes, with
an increasing score and increasing window size ranging from 0.5145 to 0.8886, also
indicated by the large IQR in the boxplot. Here the conclusion in the tested window
size range is: the larger the better. The confusion matrix shows that on low window
sizes, the Dishwasher is most commonly misclassified as a TV, and vice versa. Dryer,
Freezer, and Others perform similarly with an average score just below 0.9. The TV
performance improves significantly with increasing window size, with scores ranging
from 0.7571 to 0.9408. The washing Machine and Office Desk have a similar result,
both only having a score above 0.80 at large window sizes. While at window size 2048
nearly all categories perform well with scores > 0.88, the Washing Machine performs
considerably less reliably with a score of 0.87092. In general, the misclassification
patterns change with window size.

The original results published in the DEDDIAG manuscript has been evaluated
using a different cross-validation approach. The published results can be found in
Appendix B.1.
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Figure 6.2: Classification results for the kNN classifier. The results of each fold
and different window sizes are combined. Boxes indicate the quartiles of results, the
vertical bar is the median, and the whiskers indicate the range of distribution within
1.5 × IQR. The rhombus-shaped dots indicate outliers.

Table 6.1: Baseline result of appliance category identification using kNN classifica-
tion. Results show F1-score for each category at tested window sizes as well as the
weighted average over all classes based on a 5-fold cross-validation. Results strongly
indicate that F1-score increases with increasing window size.

Window Size 4 8 16 32 64 128 256 512 1024 2048
Coffee Machine 0.9204 0.9269 0.9291 0.9353 0.9479 0.9487 0.9357 0.9319 0.9346 0.9335
Dishwasher 0.5145 0.5764 0.6497 0.7229 0.7893 0.8410 0.8633 0.8717 0.8745 0.8886
Dryer 0.8384 0.8452 0.8509 0.8705 0.8841 0.9013 0.9071 0.8975 0.8956 0.8901
Freezer 0.7964 0.8177 0.8368 0.8553 0.8757 0.8976 0.8967 0.9014 0.9253 0.9551
Office Desk 0.6810 0.7102 0.7351 0.7555 0.7719 0.7967 0.7969 0.8180 0.8517 0.8724
Other 0.8359 0.8442 0.8502 0.8565 0.8652 0.8756 0.8885 0.9010 0.9142 0.9333
Refrigerator 0.6916 0.7167 0.7436 0.7757 0.8041 0.8278 0.8459 0.8741 0.9040 0.9158
TV 0.7571 0.8246 0.8755 0.9034 0.9206 0.9350 0.9418 0.9443 0.9432 0.9408
Washing Machine 0.6273 0.6795 0.7383 0.7892 0.7966 0.7982 0.8032 0.8087 0.8082 0.8092
Average 0.7358 0.7679 0.7987 0.8275 0.8491 0.8677 0.8741 0.8826 0.8947 0.9053
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Figure 6.3: Combined and normalized confusion matrix of test split at all evaluated
window sizes ws = 2n with n ∈ [2, 11]. Results from each fold are combined and
normalized in the interval [0, 1]. Lighter color indicate high value.
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Figure 6.4: Feature extraction process, shown for two different signals: First a
voltage zero crossing aligned cycle is extracted. The cycle is then subsampled using
a Piecewise Aggregate Approximation (PAA) in order to reduce dimensionality. The
voltage and current cycles are then transformed into a Recurrence Plot.

6.4 A High Sample Rate Neural Network Method
In the following a high sample rate appliance identification method called Recur-
rence Plot Spacial Pyramid Pooling (RPSPP) is discussed. The approach uses V-I
trajectory, and a similar approach has been proposed by [Faus 21, Faus 20]. While
their approach requires handcrafted parameters for each tested dataset, the approach
presented here relies on the same parameters for each tested dataset while having
equivalent or superior classification performance. The algorithm is a highly gener-
alized appliance identification algorithm evaluated in an ILM 3 scenario, based on
parameter-free recurrence plot. The calculation of the recurrence plot is implemented
as a Neural Network layer, simplifying the processing pipeline and improving the re-
quired computation time by using the GPU. Evaluation is done on three public high
sample rate datasets: COOLL, PLAID, and WHITEDv1.1 [Pico 16, Gao 14, Kahl 16].

6.4.1 Method
The method uses the V-I trajectory as described in Section 4.2.2. The V-I trajectory
is transformed into two unthresholded RPs. The classification is performed using a
Spacial Pyramid Pooling Convolutional Neural Network.

Features

The feature extraction process is shown in Fig. 6.4. First, one cycle is extracted from
the data by searching for zero crossings in the voltage signal using the algorithm in
Listing 6.1. In the case of the datasets used for the evaluation of this approach, the
first step is a search for a steady-state cycle in the signal. This is done by taking 20
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Listing 6.1: Python notation of search algorithm for single voltage and current cycle
# Input :
# v_data = Voltage data
# i_data = Current data
# period_length = period length of one cycle

# Find all positive values
positive = v_data > 0

# Find Zero crossing indices
zc_idx = bitwise_xor ( positive [1:] , positive [: -1])

# Start on uphill slope
if v_data [ zc_idx [0]] > v_data [ zc_idx [0] + 1]:

zc_idx = zc_idx [1:]

# Check for even number of zero crossings
if len( zero_crossings ) % 2 == 1:

zc_idx = zc_idx [: -1]

# Assure full period for last zero crossing
if zc_idx [ -2] + period_length >= len( v_data ):

zc_idx = zc_idx [: -2]

# Choose last cycle
start = zc_idx [ -2]
stop = zc_idx [ -2] + period_length

v_cycle = v_data [ start :stop]
i_cycle = i_data [ start :stop]

cycles after the switch-on event and then using the last full cycle available by looking
for the zero crossing in order to ensure we are in steady-state. The corresponding
current measurements are extracted in alignment with the voltage zero crossings.

In order to reduce the number of data points, each cycle is scaled to 48 values
using a PAA [Keog 01]. PAA is a fast dimensionality reduction algorithm, that ap-
proximates pieces of the signal by computing the mean value of equal frames of the
original signal. Here, the implementation provided by the Python package pyts is
used [Faou 20].

After the PAA as been applied, the reduced signals are then turned in two RPs.
Recurrence is a property of many natural processes and systems. States that have
been observed more than once are often followed by similar states. These recurrences
can be represented in a recurrence matrix R = (Ri,j) defined as:

Ri,j(ϵ) = Θ(ϵ − |xi − xj||), i, j = 1, ..., N . (6.16)

N represents the number of samples xi, ϵ is a threshold, and Θ the Heaviside or step
function:

Θ(x) =
0 x ≤ 0

1 x > 0
. (6.17)

For states that are in the ϵ-neighborhood the following applies:

xi ≈ xj ⇐⇒ Ri,j ≡ 1 . (6.18)

Plotting the recurrence matrix as a black and white image produces a visual
representation called RP, that can be used for qualitative assessment by humans
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Figure 6.5: Deep Neural Network used for appliance identification. The network is
composed of four parts: Recurrence, CNN, SPP, and FC.

[Marw 07]. When using powerful classification algorithms, such as Neural Network
(NN), the complexity reduction introduces by the threshold ϵ and step function Θ may
not be desirable. Behavior is similar to cutting off or binarizing with an ϵ parameter
can be learned by a NN. A denser representation can be obtained by calculating the
pairwise distances to obtain a distance matrix D = (Di,j):

Di,j = |xi − xj| . (6.19)

These pairwise distances are then plotted. This modification of the RP is also known
as unthresholded recurrence plot or distance plot [Marw 07]. The Euclidean distance
is used for the distance calculation. The RP processing steps are as described in
[Wenn 19a], using a threshold cut-off at three times the standard deviation σ of all
distances in D:

D′
i,j =

3σ Di,j ≥ 3σ

Di,j Di,j < 3σ
. (6.20)

The developed PyTorch recurrence plot implementation is available online∗. It im-
plements (6.19) as a Compute Unified Device Architecture (CUDA) kernel, allowing
parallel computation of the RP on a Graphics Processing Unit (GPU).

Unthresholded recurrence plots have been shown to work as feature inputs for a
vast range of time series classification problems [Wenn 19a]. [Faus 20] use a Weighted
Recurrence Plot (WRG) introducing a weight parameter δ that is used to tune the cut-
off. Both parameters are also fine-tuned as parameters during NN training [Faus 21].

Classification

The generated recurrence plots D′ are classified using a CNN combined with Spacial
Pyramid Pooling (SPP). Using a CNN and SPP has been shown to work effectively
in visual recognition tasks [He 14]. Figure 6.5 shows the full network architecture,
which consists of four blocks: Recurrence, CNN, SPP, and a fully connected (FC).

The network inputs are the two channels, voltage and current, which have been
resized using PAA to a vector of length 48. Each channel is converted into a RP
which is then fed into a series of CNN layers. The CNN part of the network contains
four layers. All CNN layers use a 3 × 3 kernel and have a Rectified Linear Unit

∗https://github.com/walwe/pytorch-recurrence

https://github.com/walwe/pytorch-recurrence


6.4. A High Sample Rate Neural Network Method 81

Listing 6.2: Calculation of stride and kernel size for adaptive max pooling
stride = in_size // out_size
kernel_size = in_size - (out_size -1)* stride

(ReLU) activation function. The first layer has the same number of input and output
channels and a two-dimensional max pooling layer of size 3×3. The other CNN layers
all use 32 channels. Two-dimensional batch normalization is applied in the last two
layers. The last CNN layer also has a two-dimensional dropout with a probability of
0.2 applied. The batch normalization as well as the dropout proved to be crucial for
the network to generalize quickly and to prevent overfitting.

The SPP layer is a combination of four two-dimensional adaptive max pooling
filters of different sizes (1 × 1, 2 × 2, 4 × 4, 8 × 8). Adaptive max pooling is a
dimensionality reduction mechanism that outputs a fixed size vector by adapting the
max pooling kernel size. In our case, the output size of the CNN block and therefore
the input size of the SPP layer is of size 32 × 16 × 16, where 32 is the number of
CNN channels. The size has been reduced from 48 × 48 to 16 × 16 by the 3 × 3 max
pooling in the first layer of the CNN block. Since 16 × 16 is an integer multiple of
the SPP filter sizes, adaptive max pooling is implemented by calculating the stride
and kernel size as shown in Listing 6.2.

The max pooling filter outputs are stacked to form a new vector. The SPP layer,
therefore, outputs a fixed length vector of size 32 · (1 · 1 + 2 · 2 + 4 · 4 + 8 · 8) = 2720,
where 32 is the number of channels produced by the last CNN layer. 1 ·1, 2 ·2, . . . are
the output sizes of the adaptive max pooling layers applied to the channels. The layer
has the purpose of recognizing different features in the recurrence plot by partitioning
the plot into finer and coarser levels. This way, the network is capable of recognizing
features in the plot of different sizes. The flattened and stacked SPP layer output is
then fed into the FC layer. The SPP layer also works as a dimensionality reduction
before the FC layer. The last layer’s output size is equivalent to the number of classes
to be classified.

6.4.2 Evaluation
For direct comparison, the evaluation was done in close alignment with the evaluation
presented by [Faus 20]. The evaluation presented here is as described by the authors
and their experiment has been reproduced as closely as possible by using the same
dataset-split approach and random seed.

Data

The data used for evaluation of the proposed appliance identification method are
three public datasets: COOLL, PLAID and WHITEDv1.1 [Pico 16, Gao 14, Kahl 16].
These datasets have been widely used for the evaluation of appliance identification
methods.

COOLL (Controlled On/Off Loads Library) is a dataset containing controlled
On/Off loads of 42 appliances of 12 categories. The data was recorded at 100 kHz



82 Chapter 6. Appliance Identification

sampling frequency, which is a very high sampling rate compared to other datasets.
The dataset contains 20 samples per appliance, recorded in a laboratory in France.
Similar to other publications, only the appliance categories with at least 2 appliances
and therefore 40 samples are used. The categories used are Drill, Fan, Grinder, Hair
Dryer, Hedge Trimmer, Lamp, Sander, Saw, and Vacuum Cleaner.

The second dataset used is PLAID 2017 (Plug Load Appliance Identification
Dataset). The dataset was collected in the US. It was recorded at a sampling fre-
quency of 30 kHz. It contains a total of 1793 records from 11 different appliance
categories.

The third dataset used for evaluation is WHITEDv1.1 (Worldwide Household and
Industry Transient Energy Data Set). It contains 1259 recordings of 47 appliance
categories with a total of 110 different appliances. The dataset contains the first
5 seconds of the appliance start-ups, recorded at a sampling frequency of 44.1 kHz.
Data from 21 of the available categories is used.

Validation

The evaluation is performed in a stratified k-fold and a leave-one-group-out cross-
validation. The latter is done in order to test the generalization performance. The
PLAID dataset provides groups in the form of locations called houses 1–55 that is
used for the leave-one-group-out validation. COOLL and WHITED do not provide
such groups as part of the dataset. Therefore, the appliances were assigned to random
groups based on their provided appliance name as proposed by De Baets [De B 18b].
The COOLL dataset for example provides appliances’ names in the form of: Drill_1,
Drill_2, . . . , Drill_6. The maximum number of different appliances in one category is
8, thus the number of created groups/houses for COOLL is 8. A new label in the range
0–7 is randomly assigned to the 6 Drill groups. Therefore 6 of the 8 houses contain a
Drill, but no house will share the exact same Drill, resulting in a real generalization
task. This grouping results in 8 groups for COOLL and 9 for WHITEDv1.1. Faustine
et al. [Faus 20] present their WRG model results, claiming to use the same data split
approach. Based on a review of the published source code∗, a conclusion is drawn:
the results are not based on the group split described in the study, but rather a k-
fold-like split. Therefore, corrected results for the WRG algorithm based on the new
evaluation are also presented.

The final evaluation is done using a macro F1-score (see Section 3.5.4). The macro
F1-score is calculated per fold and finally averaged over all folds:

Fmacro = 1
K

K∑
k=1

1
N

N∑
a=1

Fk,a (6.21)

where K is the number of folds, N the number of appliance categories and Fk,a the
F1-score of each category a in fold k.

Results

The results of the evaluation of the appliance identification task show an improvement
on COOLL and PLAID in both evaluations in comparison to De Baets [De B 18b] and

∗https://github.com/sambaiga/WRG-NILM

https://github.com/sambaiga/WRG-NILM
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Table 6.2: Leave-One-Group-Out results (Fmacro) on COOLL, WHITEDv1.1, and
PLAID. WRG results have been re-evaluated. De Baets’ results are presented as in
their publications.

Algorithm COOLL WHITEDv1.1 PLAID
De Baets [De B 18b] N/A 0.7546 0.7760
WRG [Faus 20] 0.447 0.3954 0.8921
RPSPP 0.5329 0.4310 0.8942

Table 6.3: 5-fold cross validation results (Fmacro) of our experiments on COOLL,
WHITEDv1.1, and PLAID. De Baets is not listed as they do not provide results.

Algorithm COOLL WHITEDv1.1 PLAID
WRG [Faus 20] 0.8957 0.9984 0.8082
RPSPP 0.9213 0.9924 0.8456

WRG [Faus 20]. Results are presented in Table 6.2 and 6.3. The proposed Spacial
Pyramid Pooling CNN network is capable of achieving the highest F1-score for the
PLAID and COOLL datasets in both evaluation scenarios. The De Baets results are
presented as published by the authors. The authors did not publish results for the
COOLL dataset. As they did not publish their source code, it cannot be assured that
their experimental setup is comparable. The re-evaluation of the WRG algorithm
shows very different results compared to the authors’ published results due to the
difference in generating the groups for the leave-one-group-out evaluation.

The leave-one-group-out evaluation of our approach for COOLL and WHIT-
EDv1.1 results in a F1-score of 0.5329 and 0.4310. While on COOLL the RPSPP
approach achieves a higher score compared to WRG, the absolute scores are low.
The confusion matrix in Fig. 6.6 shows that the Drill, Grinder, Hedge Trimmer, Saw,
and Vacuum are frequently confused. The current signature of all these appliances
can in some cases be very similar, leaving no grounds for separation. The Grinder
category cannot be classified at all by either of the algorithms, the WRG also fails to
classify the Hedge Trimmer. The new RPSPP approach can improve the results for
two categories (Hair Dryer and Fan) to a perfect score of 1.0. On WHITEDv1.1 the
approach presented by De Baets achieves the highest score of 0.7546. Similarly to
the COOLL dataset, both WRG and RPSPP do not result in good scores. The main
reason can be found in the per class F1-score in Fig. 6.9. The WRG algorithm com-
pletely fails to classify 7 out of the 21 classes with a F1 of 0.0. The RPSPP does not
classify 6 out of the 21 classes. Since this is not the case in the 5-fold cross-validation
shown in Fig. 6.10, it must be assumed that in the case of the WHITED dataset, both
algorithms do not learn a generalized representation of these classes. The confusion
matrix in Fig. 6.7 shows that the CFL class is always misclassified as Light Bulb by
the RPSPP approach. In general, there are some clear patterns of misclassifications
resulting from evaluation folds where the training split was insufficient for the test
split.

On PLAID both WRG and the here presented approach outperforms De Baets
with an average F1-score of 0.8921 and 0.8942. Figure 6.8 shows that Air Conditioner
and Fan are getting confused as well as Hair Dryer and Heater. The misclassification
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Figure 6.6: Confusion matrix of leave-one-house-out test split result on COOLL
dataset. Cross-validation results have been aggregated.

pattern shows that very similarly operating appliances are hard to separate by their
V-I trajectory. Air Conditioner and Fan both have a similar ventilation mechanism.
Hair dryer and Heater both use a heating coil. The V-I trajectory recurrence plot
seems to not provide a good enough feature in order to separate these very close
appliance categories. Figure 6.9 reveals that the new approach particularly improved
the results for the worst-performing categories: Air Conditioner, Fridge, and Heater.

The results on the 5-fold cross-validations are much better. For the COOLL
and PLAID datasets, the new RPSPP approach outperforms the WRG algorithm.
On COOLL RPSPP achieves a F1-score of 0.9213 while WRG achieves 0.8957. On
WHITEDv1.1 both approaches achieve near-perfect scores, where WRG has a score
of 0.9984 and RPSPP 0.9924. The RPSPP score for the PLAID dataset is 0.8456
compared to WRG with a score of 0.8082.

The evaluation using the leave-one-group-out for the COOLL and WHITEDv1.1
dataset is a challenging task for NNs as the datasets are small and the risk of over-
fitting is high. While the 5-fold validation results in very good scores, the leave-
one-house-out task only results in good scores for PLAID, likely due to the PLAID
dataset being much larger compared to the others.

6.5 Summary

In this chapter, a low and high sample rate appliance category identification algorithm
has been described. Both approaches have been designed for ILM 3 scenarios, where
each appliance is monitored independently. Such scenarios are less complex than, e. g.,
NILM scenarios. With the recent advancing of Internet of Things (IoT) technology,
ILM 3 scenarios become more and more realistic as the monitoring hardware for
individual appliances becomes more affordable.
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Figure 6.7: Confusion matrix of leave-one-house-out test split result on WHIT-
EDv1.1 dataset. Cross-validation results have been aggregated.
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Figure 6.8: Confusion matrix of leave-one-house-out test split result on PLAID
dataset. Cross-validation results have been aggregated.
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Figure 6.9: F1-score per category in the leave-one-group-out validation. (a)–(c)
show the WRG approach and (d)–(f) the here presented RPSPP approach.
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Figure 6.10: F1-score per category in the 5-fold cross validation. (a)–(c) show the
WRG approach and (d)–(f) the here presented RPSPP approach.



88 Chapter 6. Appliance Identification

The low sample rate approach described is based on the commonly used RMS
averaged power value (cf. Section 6.2.1). The evaluation on the DEDDIAG dataset
(cf. Chapter 5) shows that the identification improves with increasing window sizes.
The approach has been published as a challenge as part of the dataset [Wenn 21b].
The evaluation presented here was performed using an improved data split approach.
This made the task more challenging and the results slightly less reliable compared
to the published results. In the previous publication, the k-fold split has been done
on window bases and not based on the appliance cycles. When using overlapping
sliding windows, this breaks the required strict separation of train and test data.

An average F1-score of 0.91 can be achieved when classifying based on 2048 sec-
onds of data. This means that it requires about half a minute to reliably identify an
appliance category. In cases where the features of an appliance are very unique, such
as a Coffee Machine, even a 4-second window is sufficient to determine the category.
It could therefore be shown, that a kNN approach and low sample rate data provide
sufficient information for the identification step in the MLDR.

Furthermore, a high sample rate approach has been developed called RPSPP.
The approach is an improvement to a method described by Faustine et al. [Faus 20]
known as WRG. It uses the V-I trajectory features which are transformed into a
RP. The classification is done using a SPP deep neural network. Unlike the WRG
approach, the presented algorithm does not rely on dataset-specific parameter tuning.
The evaluation was performed using three public datasets: COOLL, WHITEDv1.1,
PLAID. It was performed using a 5-fold cross-validation as well as a leave-one-group-
out validation. For the 5-fold cross-validation presented in Table 6.3, the RPSPP
algorithm results in superior F1-scores compared to WRG for COOLL and PLAID,
and a comparable result for WHITEDv1.1. On WHITEDv1.1, a near-perfect score
of 0.9924 was achieved. The leave-one-group-out validation is presented in Table
6.2, the result in this case is different. Performing a validation such as this tests
the generalization capability of the algorithms. For COOLL and WHITEDv1.1, only
F1-scores of 0.53 and 0.43 were achieved. For the PLAID dataset, a good score of
0.89 was achieved by both WRG and RPSPP. The results for the WRG approach has
been re-evaluated here and yield very different results compared to the one published
by the authors [Faus 20]. The data split implemented and published by the authors
does not implement the logic described in the publication. For the WHITEDv1.1
datasets, the approach published by De Baets et al. [De B 18b] outperformed both
WRG and RPSPP. It should be noted that their result has not been re-evaluated
and comparability is uncertain. It is concluded, therefore, that for a large dataset
such as PLAID, the approach presented works reliably, even in a leave-one-group-out
scenario. On a 5-fold cross-validation, the approach is very reliable.

It could be shown in the evaluation that both low and high-sample rate approaches
are valid approaches to appliance identification. Which option is recommended in
real-life scenarios will therefore be a question of the speed with which an appliance
needs to be identified and what type of hardware will be made available for mass
markets.
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Substantial parts of this chapter’s Section 7.4 and 7.5 have been published in the fol-
lowing manuscript: [Wenn 21b]. Substantial parts of Section 7.6 have been published
in the following manuscript: [Wenn 19b]. The majority of the manuscript has been
authored by the author of this thesis. The main scientific contributions are based on
his own work and thoughts.

7.1 Introduction
After the appliance category has been determined, on cycle-based appliances, the
starting and stopping time of each cycle can be extracted. In the Machine Learning
Demand Response Model (MLDR), this process is called segmentation and leads to a
list of appliance-specific start-stop timestamps and associated load patterns. Based
on this, the individual load profile γ of each appliance can be determined as the
electricity demand between the start and stop event. The result is a list of ON
(start) and OFF (stop) timestamp pairs (t0, t1) and the associated load profiles γ.
The ON/OFF events are the basis on which to build a usage pattern. Examples of
start and stop annotations for different appliances are shown in Fig. 7.1.

The usage pattern and load profiles are the foundation for forecasting a house-
hold’s load and for providing recommendations or automatically performing actions.
These event detection tasks are often performed using thresholding methods [Girm 16].
In the following, a simple lower bound thresholding algorithm, as well as a Support
Vector Machine (SVM) based algorithm, are discussed. Both algorithms classify
based on a sliding window over the power measurements. Using a sliding window
helps to overcome the fact that load measurements are a continuous time series that
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Figure 7.1: ON/OFF-annotation examples from three appliances with id 1, 6, 26 in
the DEDDIAG dataset. The blue line shows the provided ground truth annotation. It
can be seen that the segmentation of the refrigerator is a much simpler task compared
to the washing machine or dishwasher.

contain too much data to be classified all at once. This sliding window use also helps
achieve the default series length that is required. The use of a sliding window will also
help to further develop such methods into a streaming method. The two algorithms
are based on two fundamentally different approaches. The thresholding algorithm
predicts the appliance being ON or OFF (steady state) for each window. The SVM
approach predicts the transient state between ON and OFF, so it predicts the actual
switching event. In both cases, the event is derived using a heuristic that connects
the ON and OFF event. The evaluation shown here is performed to represent the
difference of the two approaches and their advantages and disadvantages.

Until the publication of Domestic Energy Demand Dataset of Individual Appli-
ances in Germany (DEDDIAG), described in Chapter 5, no low sample rate public
datasets that provided ground truth was available. Thus the evaluation of most pub-
lications does not, in essence, predict events, but rather the presence of electricity
consumption. The DEDDIAG dataset provides manual event annotations that can
act as ground truth to train and evaluate appliance segmentation algorithms. An
overview of the available annotations is given in Appendix A.2.

7.2 Switching Event Definition
In literature, two different understandings of events in terms of Demand Response
(DR) exist: edges events and switching events. The problem with different event
definitions has already been addressed in Section 4.2.3. In terms of segmentation,
the term events are always understood as switching events, and for simplicity in the
following event is equivalent to a switching event. Event annotation is denoted as
a segmentation task where an event segment e = (t0, t1) is defined by the interval
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between two timestamps t0, t1, t0 < t1 during which an appliance is running, e. g., a
washing machine being started at t0, finishing a full washing cycle at t1 (note that
the appliance might consume only a very small amount of power at certain times
while running, which may make it very hard to distinguish this case from the actual
end of the cycle). For most appliances, such as washing machines and dishwashers,
there are no overlapping segments. This is also the case if there are different labels
defined for one appliance, e. g., PreWash and Normal. For refrigerators and freezers,
overlap between the light and compressor labels is possible, but overlap within one
label cannot occur.

7.3 Related Work
Giri et al. present a two-step approach. First, they find areas of interest based
on a threshold step change in real power, e. g., 50 Watts [Giri 13]. If the power
averaged over the first two seconds is above 50% of the event’s threshold the area
is labeled as ON. For OFF events the chosen average is 80%. This is described as
a pre-processing step for the appliance identification task. The performance of the
approach is unknown, as the publication does not present an evaluation.

Yang et al. use goodness-of-fit (GOF) event detection combined with ON/OFF
pairing as described by [Giri 13] followed by k-means clustering [Chua 15]. They also
do not present a numeric evaluation.

Kahl et al. propose a multivariate event detection approach [Kahl 19]. They use
six different high sample rate features: current, ∆(current), admittance, spectral
flatness, cumulative sum, ∆(cumulative sum). They evaluate the separation of their
features using a k-Nearest-Neighbor (kNN) and SVM on the BLOND-50 and BLUED
datasets. Since both datasets provide high sample rate data of 50 Hz and 12 kHz,
their approach requires high sample rates. Overall they achieve the best F1-score
for the BLUED dataset using the ∆(cumulative sum) with a kNN using a MinMax
normalization. Their overall achieved F1-score for the BLUED dataset is 0.78. On
the BLOND-50 dataset, the best result was achieved using the cumulative sum and
a SVM classifier. Using a variance normalization, their overall F1-score is 0.67.

Rollins et al. describe an activity annotation collection system to assist in collect-
ing usage annotations. The authors conclude that a simple lower bound thresholding
algorithm is not sufficient to annotate switching events: “We deployed this prelim-
inary algorithm for two houses in our study and discovered that while the 20 W
threshold was appropriate for all devices in the first house, it was not appropriate
for all devices in the second”. The authors propose to identify load patterns using
a density-based spatial clustering of applications with noise (DBSCAN) algorithm
to cluster different power states to overcome manual threshold parameter tuning
[Roll 14]. The authors also describe a feedback loop to end-users using a smartphone
app and push notifications and ask the user to validate segmentation and gather data
to retrain.
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Figure 7.2: False annotations that are very mildly punished when evaluating per
timestamp using F1-score or similar. The blue line shows the real event segment, the
gray area shows the predicted event segment, where on the left the real event segment
is predicted as two segments, and on the right two real event segments are predicted
as a single one. Using the Jaccard-Time-Span-Event-Score (JTES) both cases will
result in a score ≤ 0.5.

7.4 Jaccard-Time-Span-Event-Score (JTES)
Since in a Non-Intrusive Load Monitoring (NILM) context events are commonly de-
fined by a single timestamp, the evaluation of such events is usually done based on
the correctness of the label for each time step using standard metrics such as true pos-
itive rate, false positive rate, accuracy or F1. For usage analysis or event attribution,
these metrics are problematic because all such events are extremely rare, especially
when only annotating the start or end. To put it in perspective: an appliance that
is only switched on once per day will, in a dataset recorded with 1 Hz, result in hav-
ing to find one value within 86400 data points. Evaluating an appliance based on
ON/OFF status for each available time-step will for long-running appliances result in
a much more balanced task. While for electricity attribution tasks such as disaggre-
gation, this evaluation can be seen as fair, for appliance usage analysis it is still not
strict enough. A per timestamp evaluation will not provide a strong enough penalty
for many unwanted annotations such as splitting or combining of event segments as
shown in Fig. 7.2.

For usage analysis, a split or combined event segment will result in wrong overall
event counts, wrong usage lengths, and thus a false analysis of usage behavior. As
part of the development of appliance segmentation algorithms (see Section 7.5, we
have proposed a new metric called JTES [Wenn 21b]. The metric is based on the
Intersection-over-Union (IoU) metric, also known as the Jaccard index. The Jaccard
index computed on a single segment is:

iou(eT, eP) = Intersection
Union = min(tT1, tP1) − max(tT0, tP0)

max(tT0, tP0, tT1, tP1) − min(tT0, tP0, tT1, tP1)
, (7.1)

where eT is the true event segment and eP is the predicted one; this basically assumes
that a box of height one is used for comparing regions. The Jaccard index is widely
used to evaluate image segmentation tasks such as object detection, where commonly
true positives are defined as having an overlap of more than 50% [Ever 10], which
are then used to calculate an overall accuracy score. The JTES avoids setting an
arbitrary threshold and therefore eliminates the drawbacks of using pure IoU. In the
first step, we compute an average IoU for each true event segment, only taking into
account predictions that actually have at least a partial overlap with the true event
segment. Let eTi, i = 0, . . . , NT −1 be a true event segment and ePj, j = 0, . . . , NP −1
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a predicted segment, where NT, NP is the number of true and predicted segments,
respectively. The average IoU Ai for true event i is then given by

Ai = 1
NNZi

NP−1∑
j=0

iou(eTi, ePj) , (7.2)

where iou(eTi, ePj) computes the IoU for the segments eTi and ePj as defined in (7.1),
and NNZi is the number of non-zero IoU-values in the sum (i. e. the predictions with
an overlap). The final score is then calculated by summing all Ai and normalization
to the number of true event segments NT corrected by the number of false positive
predictions NFP:

JTES(eT, eP) =
∑NT

i=0 Ai

NT + NFP
, (7.3)

where

eT = (eT0, eT1, . . . , eTNT−1) ,

eP = (eP0, eP1, . . . , ePNP−1) .
(7.4)

The JTES requires non-overlapping true event segments, i. e. eTi ∩eTj = ∅ ∀i, j, i ̸= j.
It is designed to reflect real-world expectations on event annotation algorithms, where
an event that is split in half will at best only be evaluated as half correct, the same
applies to scenarios where two true events have been merged into one event as shown
in Fig. 7.2. Splitting a real event in two successive events will result in a JTES of at
most 0.5, while common scores such as accuracy or F1 will evaluate each time step
independently and still result in perfect scores.
The principles of JTES are:

• Score is in range [0, 1], where 0 is lowest and 1 best,

• false positives and false negatives are equally bad,

• if a true event spans over multiple predicted events, the result is averaged,

• if the predicted event spans over multiple true events, the result is accounted
for accordingly,

• if NT = 0 and NP > 0, the score is 0,

• if NT > 0 and NP = 0, the score is 0,

• if eT = eP (assuming the segments are ordered by start time), the score is 1.

A python reference implementation, called python-jtes, has been published on
github.com∗. Listing 7.1 shows a usage example of python-jtes.

∗https://github.com/deddiag/python-jtes

https://github.com/deddiag/python-jtes
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Listing 7.1: Usage example of the reference implementation of the JTES called
python-jtes.
import numpy as np
from jtes import jaccard_timespan_event_score

y_true = np. array ([
(np. datetime64 (’1900 -01 -01 T00 :00:00 ’), np. datetime64 (’1900 -01 -01 T01 :00:00 ’)),
(np. datetime64 (’1900 -01 -01 T03 :00:00 ’), np. datetime64 (’1900 -01 -01 T04 :00:00 ’))

])
y_pred = np. array ([

(np. datetime64 (’1900 -01 -01 T00 :00:00 ’), np. datetime64 (’1900 -01 -01 T01 :00:00 ’)),
(np. datetime64 (’1900 -01 -01 T03 :00:00 ’), np. datetime64 (’1900 -01 -01 T05 :00:00 ’)),

])
# Returns 0.75
jaccard_timespan_event_score (y_true , y_pred )

7.5 A Lower Bound Thresholding Method
The lower bound thresholding method is the simplest and most commonly used al-
gorithm for appliance switch event segmentation. As already concluded by Rollings
et al., it is not sufficient for many appliances and does not generalize [Roll 14]. It has
been implemented as a challenge baseline for the DEDDIAG dataset [Wenn 21b].

A lower bound thresholding algorithm defines a single threshold to separate the
ON/OFF states. The principle of a threshold algorithm is, that the ON and OFF
state is separable by a distinctive electricity demand. This means, that while the
appliance is ON, the electricity level must stay above the threshold or it will lead to
the fragmentation of a single event. As shown in Fig. 7.1, the existence of such a
threshold is not guaranteed, as in between one washing machine or dishwasher cycle,
the power demand can be very low.

Lower bound threshold approaches will only work in Intrusive Load Monitoring
(ILM) 3 scenarios where only one appliance is recorded at a time. The major advan-
tage is the implementations and computational simplicity.

7.5.1 Method
In the implementation used here, the threshold is calculated on the sliding win-
dow’s average. For each window, the algorithm determines whether the appliance
is switched ON or OFF. The appliance is seen as switched on when the average
electricity demand E in a sliding window w reaches a threshold t:

E(w) =
0 avg(w) < t

1 avg(w) ≥ t
. (7.5)

The threshold is defined as the non-zero minimum average window calculated over
each event in the train split. This approach therefore does not determine the edges
of the ON and OFF events (t0, t1) directly, it classifies each window as ON or OFF.
When using an averaged sliding window approach, there are edge cases where t0 or t1
are within the window. Since each window has to be associated with a single label,
it is defined that cases where t0 is within the window are still labeled as OFF and
cases where t1 is within the window are seen as ON.
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Listing 7.2: Pseudocode of the lower bound algorithm.
# input : 2D- Sequence of windowed input data -> rolled_data ,
# 2D- Sequence of windowed input labels -> rolled_labels

# Find windows that only contain ON (True)
on_idx = []
for idx = 0 to rolled_labels . length :

if False not in rolled_labels [idx ]:
on_idx . append (idx)

end
end

# compute average of each ON window
averages = []
for idx in on_idx :

a = average ( rolled_data [idx ])
if a > 0:

averages . append (a)
end

lower_bound = min( averages )
# output : Lowest , non -zero average value of window with only ON states ->

lower_bound

Listing 7.3: Python implementation of the lower bound algorithm using numpy
(np).
rolled_average = np. average (data[ labels ], axis =1)
rolled_average .sort ()
lower_bound = next( filter ( lambda x: x > 0, rolled_average )) # first -non -zero value

Listing 7.2 shows the pseudocode of the used algorithm. Listing 7.3 shows the
used Python implementation utilizing the NumPy∗ package. The implementation
highlights the simplicity of the approach as it can basically be implemented in two
lines of code.

7.5.2 Finding Events

The algorithm does not directly predict events as e = (t0, t1), as it only predicts an
ON or OFF label for each window. After each window has been classified as ON or
OFF, the event e is found by searching for state transitions in the predicted labels.
An ON event therefore exists whenever an OFF window is followed by an ON window
and vise versa. The algorithm used here works as follows:

1. Find all state transitions from OFF to ON.

2. Find all state transitions from ON to OFF.

3. For each ON event, find the closest OFF event, where tON < tOFF.

∗https://numpy.org

https://numpy.org
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7.6 A Support Vector Machine Method

Next to the thresholding approach that classifies the steady state, a transient state
approach was developed. Unlike the thresholding approach where each window is
classified as ON or OFF (steady state), the SVMs classifies the transient state between
ON and OFF, so the actual start and stop event. For appliances such as washing
machines, the start and end timestamps are very rare events. The maximum number
of usages per day is given by the usage cycle length, meaning if a cycle takes 3 hours,
the maximum number of start events is given by 24h/3h = 8. Measuring data at
1 Hz will lead to 86,400 measuring points per day, meaning the events looked for are
at maximum of 8 timestamps out of 86,400, thus being extremely rare. Since we are
using a sliding window, we define the classification task to identify whether a given
window contains a start or stop event. The classifier has to classify the two transient
states OFF to ON and ON to OFF, thus three classes exist: steady, start, and stop.

The classification task has been tested using Long Short-Term Memory (LSTM)
and SVM in preliminary experiments. LSTMs are a type of Recurrent Neural Net-
work (RNN) architecture designed to address the issue of vanishing gradients, which
is common in traditional RNNs [Hoch 97]. LSTMs are useful for processing sequential
data and have been used in a wide range of applications such as speech recognition,
natural language processing, and time-series prediction. Preliminary experiments
revealed that both classifiers, LSTM and SVM, produce promising results. Signif-
icant improvements were thus not anticipated by selecting a specific classification
algorithm, but rather by improving pre-processing and connecting the discovered
ON/OFF events. Dominik Stecher then investigated the SVM approach further,
providing preliminary experiments on different pre-processing techniques [Stec 20].

7.6.1 Pre-processing

A sliding window is used to convert the continuous time series to individual feature
vectors. The data used for training are composed of three parts: start sequence, stop
sequence (transient state), and steady-state sequences. The sequences are extracted
by taking the annotations from the DEDDIAG dataset. The extracted start and
stop sequences are of length 4 × ws, where ws is the window size. The sequences are
extracted so that the start and stop lie in the center. Next to these transient state
sequences, steady-state measurements are extracted. In general, the steady state is
defined as all windows that are not part of the transient state set. As this would also
include many zero values whenever the appliance is OFF, the steady state data are
defined as the data between the start and stop annotation, without the actual start
and stop.

Label definition

As both the start and stop are single points in time, and only a single label per
window is desired, the definition of a transient window must be determined. A
window is labeled as the transient state when the start or stop timestamp is within
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[ X X X X X X X X X X O X X X X X X X ]Steady State
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[ X X X X X X X X X X O X X X X X X X ]Transient State
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window size = 10
d = 4

Figure 7.3: Sliding window over time steps where X marks no event and O a start
or stop event. For a window size of 10, the start or stop must be within the 8 green-
colored fields of the window for the window to be seen as a transient state.

40% to the left or right of the center of the window (cf. Fig. 7.3), rounded to the
nearest integer:

d = ⌊0.4 × ws + 0.5⌊ , (7.6)

where d is the distance from the center and ws the window size. This definition
aims to increase the information available within the window for transient state cases
because in many cases the measurements before or after a start are zero. Without
such a definition the SVM would have to be able to determine a decision boundary
based on a single non-zero value. Without this definition, there would be a decrease
in robustness to noise, where only a single electricity spike is measured.

Data Reduction

On long-running appliances, such as a dishwasher, the steady state data available
are much larger compared to the transient data, therefore, a limit was placed on the
maximum amount of steady and transient state data. In total a maximum of 5, 000
windows from the steady state set and 10, 000 windows from the transient state are
used. The ratio between steady and transient state is chosen to balance the higher
feature variation in steady-state while not creating a large class imbalance. These
windows are randomly chosen. Now this composed training data set is normalized by
removing the mean and scaling it to unit standard deviation. Thus the measurements
have a mean of 0 and a standard deviation of 1.

Further, each sliding window of the data is pre-processed using a Discrete Wavelet
Transformation (DWT). Only the approximate wavelet coefficients are used to obtain
a low-pass representation of the signal. The Daubechies wavelet with 30 coefficients
(db30) was found to produce the most robust results. The wavelet transformation
was done using the PyWavelets∗ python package. The final feature vector is com-
posed of the wavelets’ approximate coefficients and the arithmetic mean of the power
measurements. The wavelet transformation and arithmetic mean were explained in
Section 6.3.1.

∗https://github.com/PyWavelets/pywt

https://github.com/PyWavelets/pywt
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7.6.2 Classification
Due to the need to create a methodology that can rely on a few annotation samples,
the choice was made to incorporate SVM to classify sliding windows of the time
series. SVMs use a hyperplane to separate the classes linearly in a dataset. The
hyperplane not only separates two classes, it also maximizes the distance between the
hyperplane and each class, making SVMs a large margin classifier [Bose 92]. Therefore
the hyperplane is defined by the closest data points from each class which in turn
become the support vectors. The benefit of using an SVM over other classifiers such
as Neural Networks is that it is less prone to a sampling selection bias because it does
class separation through a hyperplane instead of class-conditional probabilities. As
the problem is, in all likelihood, not linearly separable, we use a non-linear polynomial
kernel function to transform the data into a higher-dimensional space. SVMs supports
the classification of more than two classes or binary problems called multi-class SVM.
It is important to note that SVMs are inherently capable of separating only two
classes since a single hyperplane divides the feature space into two parts. For this
reason, they have to be implemented using workarounds such as multiple one-vs-rest
classifiers. Multi-class SVMs are not used here. Instead, two completely independent
SVMs were trained in order to classify start and stop events. The start and stop
events are then connected using a heuristic.

The SVM provided by the sklearn∗ python packages were used for the reference
implementation. Different hyperparameters have been tested as part of the publica-
tion [Wenn 19b]. Using a polynomial kernel proved to give the best overall result. A
degree-d polynomial kernel K of the input vectors x, y is defined as:

K(x, y) = (xT y + c)d , (7.7)

where the constant c (often referred to as coef0 in implementations) is added to the
dot product. This constant allows the kernel to adapt better to data that is not
centered or normalized. It effectively controls the influence of higher-dimensional
features in the transformed space. The experiments showed that using d = 5 and
c = 10 is a good overall choice. Next to these kernel parameters, the SVM result is
also influenced by a regularization parameter. The parameter influences the trade-off
choice made when searching for the hyperplane that separates the two classes. The
trade-off is between a hyperplane with the largest minimum margin and a hyperplane
that correctly separates the samples as well as possible. In sklearn this parameter is
called C and has a default value of 1.0. A small C value determines a favor for a
large minimum margin while accepting higher misclassifications, or vice versa. Thus,
for noisy or hard-to-separate problems, it can be necessary to choose a C value lower
than 1.0. Choosing the C parameter is part of the here presented evaluation.

7.6.3 Finding Events
Since the trained classifier only provides independent classification results, a heuristic
is required for a start and a stop to create events, defined as e = (t0, t1). Starts and
stops are connected by iterating over the found starts and connecting each start t0

∗https://scikit-learn.org

https://scikit-learn.org
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with the following closest stop t1 so that t0 < t1. In cases where multiple starts are
found before the next stop is found, only the first occurrence is used, favoring larger
events over shorter ones.

7.7 Event Post Processing

7.7.1 Event Filtering
An event duration filter is applied after constructing the events, meaning that only
events of similar duration are accepted. The accepted duration interval is defined as:

accepted = [0.8 × min(b), 1.2 × max(b)] , (7.8)

where b is the duration of the events in the training set. The 0.8 and 1.2 have
been determined empirically. This post-processing step presents a very important
improvement compared to the method used for the DEDDIAG baseline [Wenn 21b].
The difference will be shown in the following evaluation.

7.7.2 Extracting Exact Timestamp
Using a sliding window of e. g., 512 seconds, with a single label per window, will
lead to an approximated event where we only know that the event lies within the
window. The larger the window, the less exact the event classification is. Since we
are classifying successive sliding windows, we can calculate the number of windows
within which the event is present using:

eventWindowCount = 2 × b

stepSize .

In a case where all windows are classified correctly, the event is the last value of the
first window and the first value of the last window. This allows for improvements of
the classification by first calculating a probability on the found event by comparing the
number of positive labeled successive windows to the expected window count. Second,
we can estimate the exact timestamp by averaging the last value of the first window
and the first value of the last window. In case all windows were classified correctly,
we are able to calculate the exact second the event occurred, thus overcoming the
problem of increasing the window size.

7.8 Evaluation

7.8.1 Data
The evaluation is performed on the DEDDIAG dataset using a 5-fold cross-validation
based on the annotations available. Not all data in the dataset are annotated, but
it is assumed that all annotations are in series. This means, that with respect to
time, the first and last annotation marks a fully annotated area, and all data within
can be used for an evaluation. As it cannot be assumed that the appliance usage
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is evenly distributed, the 5-fold was done based on the annotations and not on the
measurements. This means that each fold will not have the same number of mea-
surements, but the same number of annotations, and therefore usages. It is likely for
some appliances, such as a washing machine (e. g., item 6), to not have annotations
for a full month. Thus, if the split would be done based on the measurements, only
very few or even no usages are part of the split. Considering this, the data is created
as follows:

1. Split the annotations into five even and contiguous parts,

2. Find the test measurement range by using the first start and last stop from test
annotations,

3. Find the training measurement range by using the first start and last stop from
the test annotations, excluding the time span used for testing.

These annotations are converted into a sliding window as previously described. By
choosing to cut the folds based on the annotations, the test set will always directly
start with the appliance being used. In order to guarantee that the transient state
is present, the measurements are taken one window size before the annotation. Thus
the test set will always start with one OFF window followed by an ON window. The
same applies to the end of the test split.

The thresholding algorithm is tested on window sizes (ws) in the interval [1, 24].
The SVM algorithm is tested using ws = 2n with n ∈ [3, 9]. A constant step size of 5
was used for all cases where the step size was smaller than the window size, otherwise,
a step size of 1 was used. Based on the annotations, the measurement windows
are labeled as ON and OFF. For refrigerators, the different labels available to the
appliance, that is compressor and light, have been evaluated as independent tasks. For
dishwashers and washing machines, the different annotations are only the available
modes and are therefore evaluated together. In total 15 different segmentation tasks
have been evaluated using 12 different appliances: 3 refrigerators, 5 washing machines,
and 4 dishwashers.

The classifiers are evaluated based on two different metrics. First using the F1-
Score, which evaluates each annotated window, providing a metric for the evaluation
per window. Secondly, the classification is evaluated using the JTES, providing a
metric for the evaluation per event. While the F1-Score provides a good indication
of how many windows have been classified correctly, the JTES provides an answer to
how well the actual real-world events have been detected.

For the SVM approach, results are presented for different C parameters. When
using the default value C = 1.0, the SVM did not converge for some of the tested
appliances. Thus, results are presented for C = 10−n, where n ∈ {1, 2, 3}.

7.8.2 Results
Table 7.3 lists results for the 15 segmentation tasks using the thresholding approach.
Only the result for the best window size is presented, chosen based on the highest
JTES. Table 7.4 and 7.5 list results for the SVM approach. Figure 7.4 shows the
plotted F1-Score and Fig. 7.5 the JTES of all window sizes tested for the threshold-
ing algorithm. Figure 7.7 shows the plotted F1-Score and Fig. 7.6 the JTES of all
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window sizes and C parameters tested for the SVM algorithm. Both the tables and
boxplots show filtered and unfiltered results as described in Section 7.7.1 The lower
bound thresholds calculated from the training fold are listed in Table 7.1. The orig-
inal baseline results of the thresholding algorithm, that have been published for the
DEDDIAG dataset [Wenn 21b], can be found in Appendix C. Overall it can be said
that all thresholding results have been improved compared to the published results
due to the algorithmic improvements described.

Refrigerators

The results clearly show that the refrigerator compressor cycles can reliably be anno-
tated using the thresholding algorithm having a near perfect JTES of 0.9908, 0.9888,
and 0.9917 for appliances 1, 9, and 10 without filtering events by length. There is
no significant difference using the length-based event filtering explained in Section
7.7.1. Here the JTESs are 0.9853, 0.9979, 0.9970. For the compressor, the F1-Scores
for both classes are good and show that nearly all windows have been classified cor-
rectly. The refrigerator light, however, shows a large difference in results between
filtered and unfiltered versions. Unfiltered results show very low JTESs of 0.2182,
0.2809, and 0.0950, while filtered are 0.4081, 0.4126, 0.6667. Comparing the chosen
thresholds shown in Table 7.1, the light and compressor have a similar threshold of
around 1.1742 – 6.4787 W, compared to 0.2902 – 7.8069 W. This means, that both the
classifiers will not be able to separate the light and compressor based on the thresh-
old. As shown in Table 7.2, the event length of the compressor can be significantly
longer compared to the light. Thus many false positives can be detected based on
the duration. The best result was achieved at window sizes of 1, 2, and 3. Based on
the JTES box plot in Fig. 7.5(b), it can be seen that for appliance 9 label 31 and 10
label 30 the JTES is stable between folds and window sizes, although appliance 9 has
a few low score outliers.

For the same appliances (1, 9, 10), the SVM approach achieves a JTES of 0.9574,
0.8623, and 0.9752. The weighted F1 results are 0.9881, 0.9547, and 0.9977. Refrig-
erator compressor results are overall very stable between the different parameters.
The unfiltered and filtered results are not significantly different. Also changing the
C hyperparameter does not change the result significantly. The chosen window sizes
are between 16 and 128. In terms of steady-state profile complexity, the refrigera-
tor’s compressor is the most simple task and it is expected to be well detected by
the thresholding algorithm (see Fig. 7.1). At the start of each cooling cycle, the
compressor starts and the power demand jumps to a certain value. It then slowly
decreases until the compressor stops. Both algorithms achieve very good results,
with the thresholding being a little bit ahead of the SVM. The refrigerator light has
a maximum unfiltered JTES of 0.4115, 0.2710, and 0.2586, which, overall, is better
compared to the thresholding. The filtered results are 0.3999, 0.2734, and 0.2478,
meaning a small improvement for appliance 9, but not for the rest. The C hyperpa-
rameter has also no significant impact on the resulting JTES. All three lights have
the best result at the lowest tested window size 16. Since the light events are on
average only 30, 13, and 6.5 seconds long, a window size of 16 is very large. Although
the averages are low, the event filter lengths used are very different between the three
refrigerators (see Table 7.2). A further test with window size 3 and step size one
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showed that the JTES can be increased significantly for appliances 1 and 9 to 0.5617,
0.5202, but did decrease for appliance 10 to 0.2397.

Overall the thresholding approach outperforms the SVM on the compressor task,
and on the appliance 9 the difference is significant. For the light task, both algo-
rithms have a medium performance. The lower bound thresholding is not capable of
segmenting the light without filtering the events based on duration. A further weak-
ness of the thresholding’s simplicity: the light might switch on when the compressor
is OFF or ON, which would require much more complex thresholding rules. A single
threshold is simply not capable of differentiating between compressor and light. Us-
ing a lower and upper bound combined with the change in power usage might help
to overcome this problem.

Washing Machines

Washing machines, with appliance id 2, 6, 12, 20, and 24 show medium-quality re-
sults based on the JTES for the thresholding algorithm. Results are in the range
from 0.3675 to 0.7829 for unfiltered and 0.3831 to 0.9382 with filtering. Thus, the
algorithm significantly benefits from duration-based filtering. There is a significant
change in the result compared to the results published with the DEDDIAG dataset,
where the range was 0.0385 to 0.6055. This vast performance increase, especially
on the washing machine with id 6, was achieved by removing the data smoothing
pre-processing step. In the first version of the algorithm used in the DEDDIAG pub-
lication, the data was pre-processed with a windowed average of size 3. The appliance
has multiple sections where the power demand is very low and after smoothing the
signal the power frequently fell below the chosen average. The chosen threshold by
the algorithm range from 0.2861 to 1.9314 W (cf. Table 7.1). Unlike the refrigerator
where a clear preference for small window sizes is indicated, there is no clear window
sizes recommendation for the washing machine category. The best results have been
found at windows ranging from 1–19. The algorithm works by far best on appliance
2 when using the event filter, resulting in a near-perfect JTES of 0.9382. Boxplots
in Fig. 7.5 show that adding the event duration filtering reduces the variance of the
thresholding results significantly, indicated by the much smaller whiskers. This trend
also applies to the SVM results shown in Fig. 7.6.

The SVM results on the washing machine are very diverse. The C hyperparameter
has a significant impact on the results. While for appliances 2 and 12 a higher C
value is the better choice, for appliances 6, 20, and 24, the lowest tested C = 0.001 is
the best choice. This indicates that appliances 6, 20, and 24 are the most difficult to
separate. Training the SVM for appliance 20 does not converge when using C = 0.1,
thus no results are provided. Unfiltered results range from 0.0 to 0.5460 and filtered
from 0.1131 to 0.5915, where all results benefit from the event filtering. On Appliance
24, the difference between unfiltered and filtered is 0.0 to 0.5915, meaning without
the filter, the number of false positive events is so high that the JTES is pushed to
near zero by the number of false events, making the true events insignificant. This
is not reflected in the weighted F1-score of 0.9791. Thus for washing machines, the
event filtering presents a vital step for the SVM approach. Overall the thresholding
algorithm outperforms the SVM approach for washing machines, except for appliance
12 where both achieve comparable results. Event filtering improves both algorithms
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Table 7.1: Lower bound thresholds calculated from the training split for each fold.
While refrigerators use a high threshold, washing machines, and dishwashers require
thresholds close to zero. For the refrigerator task, the two labels compressor (C) and
light (L) have been evaluated separately.

Item Category Labels Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Variance
1 Refrigerator 33 (C) 6.1362 6.1362 6.1362 6.1362 14.4896 7.8069 11.1645
1 Refrigerator 34 (L) 2.3767 2.3767 3.7584 2.3767 2.3767 2.6531 0.3054
9 Refrigerator 31 (C) 0.3011 0.3149 0.3011 0.3011 0.3011 0.3039 0.0000
9 Refrigerator 32 (L) 1.0881 1.0881 1.0881 1.5188 1.0881 1.1742 0.0297
10 Refrigerator 29 (L) 6.3812 6.3812 6.3812 6.3812 6.8686 6.4787 0.0380
10 Refrigerator 30 (C) 0.2829 0.3194 0.2829 0.2829 0.2829 0.2902 0.0002
2 Washing Machine 35, 36 2.4481 2.3672 2.3672 2.3672 2.3672 2.3834 0.0010
6 Washing Machine 5, 21, 26 0.3108 0.2887 0.2887 0.2887 0.2887 0.2931 0.0001
12 Washing Machine 37 2.7089 0.7434 2.0546 4.0761 0.0740 1.9314 2.0161
20 Washing Machine 6, 7, 8, 11, 40, 41 0.3537 0.3537 0.3537 0.4159 0.3537 0.3662 0.0006
24 Washing Machine 14 0.2893 0.2853 0.2853 0.2853 0.2853 0.2861 0.0000
4 Dishwasher 17, 18 0.3212 0.3250 0.3250 0.3786 0.3188 0.3337 0.000
5 Dishwasher 9, 10, 15 0.2733 0.2733 0.2733 0.2733 0.2776 0.2741 0.0000
19 Dishwasher 2, 4, 19, 24 0.1537 0.1537 0.1537 0.1537 0.1689 0.1567 0.0000
26 Dishwasher 12, 22, 23 0.0675 0.0675 0.0675 0.0675 0.0675 0.0675 0.0000

significantly. In terms of window size, washing machines have a clear preference for
larger window sizes of 128 and 256.

Dishwashers

The unfiltered thresholding dishwasher (4, 5 19, 26) JTES results are 0.8107, 0.7723,
0.5380, and 0.0788 (cf. 7.3). While dishwashers 4 and 5 show good results, 19 has
only a medium performance and on dishwasher 26 the algorithm fails completely
with a very low JTES. The filtered results are 0.8778, 0.9462, 0.3518, and 0.8341.
Results for four out of five dishwashers improve significantly using the event duration
filter. On appliance 26, the unfiltered result changes from 0.0788 to 0.8341, meaning
that without a filter the thresholding algorithm does not segment the appliances in
a useful manner, but it does. On the other hand, for appliance 19 the performance
decreases when using the event filter. Compared to challenge results in Appendix C,
both filtered and unfiltered results improved. The algorithm had to choose a very
low threshold as there are many periods when the washing machine uses very little
electricity. It then splits the event into multiple parts, which is heavily punished
by the JTES, but not by the weighted F1-score. Thresholds range from 0.0143 to
0.3541 W. The unfavorable JTES result on dishwasher 26 can be explained by a very
high number of false positives of short length. These short-length false positives are
successfully removed by duration filtering.

For the SVM approach, the best-unfiltered dishwasher (4, 5 19, 26) JTES results
are 0.2371, 0.5839, 0.1288, and 0.5793. The best filtered JTES results are 0.2746,
0.8828, 0.4275, and 0.8030. Meaning, that similar to the washing machine results,
the event filtering presents a significant difference. Dishwasher 4 performs best using
C = 0.001, while appliances 5, 19, and 26 perform best using C = 0.01. Compared
to the thresholding, the SVM results are in all cases not as good as the thresholding,
but for appliances 5 and 26 comparably good. No clear preference for window sizes
exists.
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Table 7.2: Event length range used to filter both, thresholding and SVM results in
seconds. Values are rounded to the nearest second. For the refrigerator task, the two
labels compressor (C) and light (L) have been evaluated separately.

Item Category Labels Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
1 Refrigerator 33 (C) 952 4140 952 4140 952 4140 968 4140 952 2172
1 Refrigerator 34 (L) 8 420 8 420 8 420 8 420 8 120
9 Refrigerator 31 (C) 614 1487 612 1487 612 1483 612 1487 612 1487
9 Refrigerator 32 (L) 2 124 2 124 2 124 2 59 2 124
10 Refrigerator 29 (L) 3 29 2 16 2 29 2 29 2 29
10 Refrigerator 30 (C) 413 937 418 955 413 955 413 955 413 955
2 Washing Machine 35, 36 1963 13933 1505 13933 1505 13933 1505 13933 1505 13660
6 Washing Machine 5, 21, 26 345 12485 345 12223 1680 12485 345 12485 345 12485
12 Washing Machine 37 2424 10936 2424 11280 2514 11280 2424 11280 2424 11280
20 Washing Machine 6, 7, 8, 11, 40, 41 541 24815 541 24815 541 24815 1437 16100 541 24815
24 Washing Machine 14 1387 24566 1387 24566 2388 23327 1387 24566 1387 24566
4 Dishwasher 17, 18 472 11759 472 11759 472 11759 472 11527 472 11759
5 Dishwasher 9, 10, 15 879 17966 879 15260 902 17966 879 17966 879 17966
19 Dishwasher 2, 4, 19, 24 1426 10883 890 10925 890 10925 890 10925 890 10925
26 Dishwasher 12, 22, 23 1660 8794 3450 7618 1660 8794 1660 8794 1660 8794
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Figure 7.4: Boxplot showing F1-Scores of thresholding segmentation method. Fil-
tering does not have any effect on the thresholding score.
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Table 7.3: Evaluation result of segmentation task using a thresholding method.
While the task for dishwashers and washing machines does not distinguish between
different labels per item, for refrigerators the two labels compressor (C) and light (L)
are evaluated as two separate tasks. Results are evaluated using JTES and F1-score
per class as well as the weighted F1-score. The result is shown for window sizes where
JTES was highest in a trial with sizes ranging from 1 to 24.

Item Category Labels ws JTES F1 OFF F1 ON Weigh. F1
Unfiltered

1 Refrigerator 33 (C) 9 0.9908 0.9983 0.9967 0.9978
1 Refrigerator 34 (L) 2 0.2182 0.8022 0.0445 0.7963
9 Refrigerator 31 (C) 7 0.9888 0.9986 0.9968 0.9981
9 Refrigerator 32 (L) 3 0.2809 0.8166 0.0530 0.8098
10 Refrigerator 29 (L) 2 0.0950 0.9533 0.0030 0.9531
10 Refrigerator 30 (C) 5 0.9917 0.9996 0.9966 0.9994
2 Washing Machine 35, 36 24 0.7829 0.9996 0.9947 0.9993
6 Washing Machine 5, 21, 26 17 0.3675 0.9328 0.5636 0.9252
12 Washing Machine 37 12 0.5125 0.9836 0.6204 0.9768
20 Washing Machine 6, 7, 8, 11, 40, 41 1 0.5184 0.9842 0.7708 0.9737
24 Washing Machine 14 9 0.4863 0.9894 0.8482 0.9817
4 Dishwasher 17, 18 22 0.8107 0.9977 0.9458 0.9958
5 Dishwasher 9, 10, 15 23 0.7723 0.9976 0.9525 0.9957
19 Dishwasher 2, 4, 19, 24 23 0.5380 0.9543 0.6154 0.9368
26 Dishwasher 12, 22, 23 22 0.0788 0.8955 0.3059 0.8722

Filtered
1 Refrigerator 33 (C) 1 0.9735 0.9987 0.9975 0.9983
1 Refrigerator 34 (L) 2 0.4081 0.8022 0.0445 0.7963
9 Refrigerator 31 (C) 1 0.9979 0.9980 0.9955 0.9972
9 Refrigerator 32 (L) 3 0.4126 0.8166 0.0530 0.8098
10 Refrigerator 29 (L) 2 0.6667 0.9533 0.0030 0.9531
10 Refrigerator 30 (C) 1 0.9970 0.9999 0.9988 0.9998
2 Washing Machine 35, 36 19 0.9382 0.9996 0.9946 0.9992
6 Washing Machine 5, 21, 26 1 0.5094 0.9332 0.5685 0.9256
12 Washing Machine 37 7 0.3831 0.9836 0.6208 0.9768
20 Washing Machine 6, 7, 8, 11, 40, 41 1 0.5283 0.9842 0.7708 0.9737
24 Washing Machine 14 1 0.6998 0.9896 0.8505 0.9821
4 Dishwasher 17, 18 12 0.8778 0.9977 0.9465 0.9959
5 Dishwasher 9, 10, 15 1 0.9462 0.9977 0.9546 0.9958
19 Dishwasher 2, 4, 19, 24 4 0.3518 0.9545 0.6166 0.9370
26 Dishwasher 12, 22, 23 5 0.8341 0.9121 0.3407 0.8894
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Table 7.4: Evaluation result of segmentation task using a SVM method without
event length filtering. Results are evaluated using JTES and F1-score. A result is
shown for window sizes where JTES was highest in a trial with window sizes ws = 2n

with n ∈ [3, 9]. No result could be calculated for appliance 24, as the SVM did not
converge.

Item Category Labels ws JTES F1 OFF F1 ON Weigh. F1
Unfiltered

C = 0.1
1 Refrigerator 33 (C) 32 0.9574 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.4004 0.9200 0.2748 0.9184
9 Refrigerator 31 (C) 32 0.8469 0.9740 0.9218 0.9595
9 Refrigerator 32 (L) 16 0.2598 0.9197 0.1577 0.9166
10 Refrigerator 29 (L) 16 0.2541 0.9999 0.0000 0.9999
10 Refrigerator 30 (C) 16 0.9751 0.9987 0.9880 0.9977
2 Washing Machine 35, 36 512 0.5460 0.9880 0.8083 0.9761
6 Washing Machine 5, 21, 26 256 0.0440 0.1440 0.0194 0.1425
12 Washing Machine 37 256 0.4084 0.9922 0.7184 0.9877
20 Washing Machine 6, 7, 8, 11, 40, 41 – – – – –
24 Washing Machine 14 16 0.0343 0.9870 0.7915 0.9766
4 Dishwasher 17, 18 256 0.0839 0.9839 0.4386 0.9613
5 Dishwasher 9, 10, 15 32 0.3475 0.9981 0.9629 0.9965
19 Dishwasher 2, 4, 19, 24 16 0.0000 0.9813 0.6310 0.9641
26 Dishwasher 12, 22, 23 128 0.5793 0.9966 0.9126 0.9931

C = 0.01
1 Refrigerator 33 (C) 32 0.9574 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.4044 0.9289 0.2753 0.9273
9 Refrigerator 31 (C) 128 0.8621 0.9679 0.9156 0.9543
9 Refrigerator 32 (L) 16 0.2710 0.9578 0.2135 0.9555
10 Refrigerator 29 (L) 16 0.2586 0.9999 0.0889 0.9999
10 Refrigerator 30 (C) 16 0.9751 0.9987 0.9880 0.9977
2 Washing Machine 35, 36 512 0.4334 0.9826 0.7143 0.9637
6 Washing Machine 5, 21, 26 256 0.0513 0.3214 0.0942 0.3184
12 Washing Machine 37 256 0.2747 0.9918 0.6774 0.9868
20 Washing Machine 6, 7, 8, 11, 40, 41 16 0.0415 0.9860 0.6140 0.9674
24 Washing Machine 14 16 0.0000 0.9880 0.8219 0.9791
4 Dishwasher 17, 18 128 0.0853 0.9885 0.6582 0.9750
5 Dishwasher 9, 10, 15 32 0.5839 0.9985 0.9668 0.9970
19 Dishwasher 2, 4, 19, 24 64 0.1288 0.9819 0.7066 0.9702
26 Dishwasher 12, 22, 23 64 0.3326 0.9951 0.8735 0.9903

C = 0.001
1 Refrigerator 33 (C) 32 0.9574 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.4115 0.9516 0.3985 0.9505
9 Refrigerator 31 (C) 128 0.8623 0.9682 0.9158 0.9547
9 Refrigerator 32 (L) 16 0.2621 0.9573 0.0575 0.9537
10 Refrigerator 29 (L) 16 0.2586 0.9999 0.0889 0.9999
10 Refrigerator 30 (C) 16 0.9752 0.9988 0.9880 0.9978
2 Washing Machine 35, 36 256 0.1405 0.3941 0.2192 0.3806
6 Washing Machine 5, 21, 26 256 0.0511 0.3990 0.2457 0.3963
12 Washing Machine 37 128 0.0633 0.0165 0.0202 0.0165
20 Washing Machine 6, 7, 8, 11, 40, 41 16 0.0000 0.9860 0.6146 0.9676
24 Washing Machine 14 16 0.0000 0.9944 0.8947 0.9888
4 Dishwasher 17, 18 256 0.2371 0.9884 0.6338 0.9745
5 Dishwasher 9, 10, 15 16 0.0640 0.9934 0.8200 0.9862
19 Dishwasher 2, 4, 19, 24 64 0.0126 0.7846 0.5616 0.7773
26 Dishwasher 12, 22, 23 32 0.1403 0.9937 0.8201 0.9868
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Table 7.5: Evaluation result of segmentation task using a SVM method with event
length filtering. Results are evaluated using JTES and F1-score. A result is shown
for window sizes where JTES was highest in a trial with window sizes ws = 2n

with n ∈ [3, 9]. No result could be calculated for appliance 24, as the SVM did not
converge.

Item Category Labels ws JTES F1 OFF F1 ON Weigh. F1
Filtered
C = 0.1

1 Refrigerator 33 (C) 32 0.9383 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.3839 0.9200 0.2748 0.9184
9 Refrigerator 31 (C) 32 0.8566 0.9740 0.9218 0.9595
9 Refrigerator 32 (L) 16 0.2532 0.9197 0.1577 0.9166
10 Refrigerator 29 (L) 16 0.2478 0.9999 0.0000 0.9999
10 Refrigerator 30 (C) 16 0.9751 0.9987 0.9880 0.9977
2 Washing Machine 35, 36 512 0.5455 0.9880 0.8083 0.9761
6 Washing Machine 5, 21, 26 128 0.1131 0.9140 0.3738 0.9020
12 Washing Machine 37 256 0.4812 0.9922 0.7184 0.9877
20 Washing Machine 6, 7, 8, 11, 40, 41 – – – – –
24 Washing Machine 14 16 0.5070 0.9870 0.7915 0.9766
4 Dishwasher 17, 18 64 0.1879 0.9873 0.6073 0.9717
5 Dishwasher 9, 10, 15 64 0.8558 0.9967 0.9221 0.9938
19 Dishwasher 2, 4, 19, 24 16 0.4275 0.9813 0.6310 0.9641
26 Dishwasher 12, 22, 23 128 0.7529 0.9966 0.9126 0.9931

C = 0.01
1 Refrigerator 33 (C) 32 0.9383 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.3880 0.9289 0.2753 0.9273
9 Refrigerator 31 (C) 128 0.8597 0.9679 0.9156 0.9543
9 Refrigerator 32 (L) 16 0.2688 0.9578 0.2135 0.9555
10 Refrigerator 29 (L) 16 0.2211 0.9999 0.0889 0.9999
10 Refrigerator 30 (C) 16 0.9751 0.9987 0.9880 0.9977
2 Washing Machine 35, 36 128 0.4701 0.9893 0.8353 0.9785
6 Washing Machine 5, 21, 26 128 0.1809 0.9932 0.5697 0.9840
12 Washing Machine 37 256 0.4229 0.9918 0.6774 0.9868
20 Washing Machine 6, 7, 8, 11, 40, 41 128 0.2861 0.9868 0.6437 0.9704
24 Washing Machine 14 16 0.5560 0.9880 0.8219 0.9791
4 Dishwasher 17, 18 128 0.1814 0.9885 0.6582 0.9750
5 Dishwasher 9, 10, 15 32 0.8828 0.9985 0.9668 0.9970
19 Dishwasher 2, 4, 19, 24 64 0.3574 0.9819 0.7066 0.9702
26 Dishwasher 12, 22, 23 128 0.8030 0.9963 0.9057 0.9929

C = 0.001
1 Refrigerator 33 (C) 32 0.9383 0.9911 0.9816 0.9881
1 Refrigerator 34 (L) 16 0.3999 0.9516 0.3985 0.9505
9 Refrigerator 31 (C) 128 0.8599 0.9682 0.9158 0.9547
9 Refrigerator 32 (L) 16 0.2734 0.9573 0.0575 0.9537
10 Refrigerator 29 (L) 16 0.2211 0.9999 0.0889 0.9999
10 Refrigerator 30 (C) 16 0.9752 0.9988 0.9880 0.9978
2 Washing Machine 35, 36 16 0.3093 0.7890 0.6090 0.7777
6 Washing Machine 5, 21, 26 256 0.2204 0.3990 0.2457 0.3963
12 Washing Machine 37 16 0.2437 0.9966 0.7851 0.9925
20 Washing Machine 6, 7, 8, 11, 40, 41 128 0.3440 0.9874 0.6624 0.9717
24 Washing Machine 14 16 0.5915 0.9944 0.8947 0.9888
4 Dishwasher 17, 18 256 0.2746 0.9884 0.6338 0.9745
5 Dishwasher 9, 10, 15 16 0.4854 0.9934 0.8200 0.9862
19 Dishwasher 2, 4, 19, 24 32 0.3056 0.9793 0.6765 0.9646
26 Dishwasher 12, 22, 23 32 0.2403 0.9937 0.8201 0.9868
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(a) Unfiltered thresholding
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(b) Filtered thresholding

Figure 7.5: Boxplot showing JTES of thresholding segmentation method.

7.9 Summary

In this chapter two different appliance segmentation algorithms have been evaluated.
The first is based on a lower bound threshold based on the assumption that an ap-
pliance will also stay above a certain threshold during usage. The second is based
on classifying the power usage pattern at the start and end. The thresholding ap-
proach relies on the fact that only a single appliance is recorded (ILM 3). It cannot
be easily extended or trained to work in aggregated data such as NILM scenarios.
The thresholding results have been improved significantly compared to the previously
published results on the DEDDIAG dataset. While the SVM approach is generally
capable of finding the start and stop of an appliance, its performance based on the
JTES is, despite the complexity of the algorithm, only good for some appliances. The
JTES has been developed after the development of the SVM as a result of the poor
relationship between the F1-Score and the real-world application, that is, the actual
events. While the SVM results looked promising using the F1-Score, they show lower
performance compared to the thresholding when evaluating with the new score. Thus
the JTES is a very important step towards the development of appliance segmenta-
tion algorithms because it provides a real-world scenario score, where splitting and
combining of events is punished. Since appliance segmentation is used to derive usage
profiles, splitting and combining events will result in an incorrect number of usages,
as well as usage time. Here the JTES shows its relevance and also the weakness of
evaluating using the F1-Score.
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Figure 7.6: Boxplot showing JTES of SVM segmentation method. Event length
filtering has a significant impact on the resulting scores.
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Figure 7.7: Boxplot showing F1-Scores of SVM segmentation method.
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Overall, using a simple thresholding algorithm will not provide a good and reliable
event detection algorithm and the simple approach would benefit from merging small
successive predictions as well as filtering based on event length. The pre-processing
step used for the baseline results in the DEDDIAG publication was meant to help
reduce false positives. It turns out that post-processing using an event duration filter
is a much better approach as it significantly improves the overall results.

The SVM on the other hand has greater potential for more complex scenarios, but
at the moment has a lower overall performance compared to the simple thresholding.
Since many parameters need to be tuned for an SVM, choosing the correct parameters
is difficult. For both, the thresholding and SVM approach, it will be challenging to
find parameters that generalize for the category and not only a single appliance.
There the SVM will have a benefit over the thresholding approach, as the SVM has
the capability of finding a much more complex separation plane.

In general, appliance usage prediction and user behavior algorithms, as described
in the next Chapter 8, will benefit from more advanced event annotations that are
evaluated against manually annotated ground truth, as these algorithms require event
annotations as their ground truth.
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Substantial parts of this chapter have been published in the following manuscript:
[Wenn 17]. The majority of the manuscript has been authored by the author of this
thesis. The main scientific contributions are based on his own work and thoughts.

8.1 Introduction
In this chapter, an approach to appliance usage prediction is described. The approach
was designed for household appliances with regular usage such as dishwashers and
washing machines. The prediction is the last step in the Machine Learning Demand
Response Model (MLDR) (cf. Section 4.4). It provides the information required by
automation systems to either control the appliances directly or to give recommenda-
tions to the household residents as to which time period using the appliance would
result in lower energy costs. These recommendations are based on the users’ normal
behavior patterns, which are automatically learned from historical data. The desired
information for Demand Response Management (DRM) are [Barb 11]:

• Which appliance will be used: Appliance,

• When will it run: Start time,

• How long will it take: Duration.

The answers to these questions can be derived from appliance usage prediction.
Duration is part of what is commonly called load profile: the electricity load over time
for a single use of an appliance. Usage prediction is sometimes seen as predicting the
load and sometimes predicting precise usages. The electric load is a combination
of predicting the start time of a certain profile. Thus, from a DRM point of view,
there is no difference whether the appliance usage or the appliance’s electricity load
is predicted.

Predicting the usage is usually described as a classification task. Forecasting
the load is usually described as a regression task. Short-term prediction commonly

113
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only describes the next 1–24 h, while long-term predictions may describe up to several
months ahead. The short-term prediction is the main focus in terms of the automated
operation of appliances or recommendation systems, as the planning horizon of Real
Time Pricings (RTPs) is in a similar range.

The here described usage prediction model is based on a household’s historic
appliance usage behavior. Thus requiring the extraction of appliance operation cycles
(events) from its electricity metering data [Step 14]. These historic events are the
result of the segmentation task as described in the previous Chapter 7.

Predicting appliance usage based on historical data follows two assumptions:

• The future usage behavior relates to past behavior,

• The unknown impact on the usage behavior is negligible.

Some appliance usage is closely related to the occupation of a household, thus pre-
dicting usage to some extent means predicting occupation. The complexity of the
prediction task is therefore very dependent on the residents’ daily routines. A house-
hold of a young single will have different routines compared to a retired couple or a
family of 5 with children going to school. Thus, appliance usage prediction is associ-
ated with randomness and uncertainties and is therefore a nontrivial task [Basu 13].

In general, the problem can be described as finding usage xm,t ∈ {0, 1} of appliance
m for the given time t, where 0 means OFF and 1 means ON. The time t is commonly
modeled as time slots of a certain length such as 10 min or 1 h. Thus the task of
prediction is to provide the ground for a decision if an appliance m will be switched
on in a certain time slot t.

8.2 Related Work
Appliance usage profiling and prediction are already discussed in various publications.

Kang et al. use ON/OFF probabilities to build a non-homogeneous Markov Chain
to model end-use energy profiles on appliance level [Kang 14]. Based on observations
from N days, the state of an appliance m for each day n at time t is described as
xm,n,t. The authors describe a Rate of Use (ROU) statistic for each hour of the day.
Although the term indicates real usage, the authors define the ROU based on the
average energy consumption and not usages. ROU is defined as:

ROUm,t = 1
N

N∑
n=1

xm,n,t . (8.1)

For each appliance, a two-state Finite State Machine (FSM) models an appli-
ance’s switching probability. Monte Carlo is used to simulating ON/OFF sequences
that capture the non-homogeneous stochasticity of appliance usage patterns for all
appliances. The authors show that the Monte Carlo simulation converges to ROUt.
The authors claim the generalization of their model for buildings with similar char-
acteristics.
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Chang et al. propose a daily pattern-based probability model [Chan 13]. The
model was created to predict the usage of printers in an office environment. The
approach aims to find an optimal day-of-the-week representation and predict the
printer usage within each hour of the day. They show that the probability model can
be learned using a Bayesian network classifier.

Basu et al. compare the performance of different classifiers such as Bayesian net-
works, decision trees, and decision tables for predicting the future power consumption
of an appliance [Basu 13]. The goal of the system is to predict the next hour’s start/no
start of an appliance. The authors describe a full home automation management sys-
tem composed of an anticipative layer, a reactive layer, and a local layer that outputs
user advice. The authors argue that predicting the consumption of a full house is
simpler than predicting a single appliance due to the randomness. Derived from
their dataset, the authors show that the difference in power usage between different
weeks is higher when looking at a single washing machine compared to the full house
consumption. The authors’ prediction is based on historical data such as past con-
sumption in binary form (0=OFF, 1=ON), hour of the day, day of the week, season
(1-4), and month (1-12). The authors evaluate this based on accuracy, which is prob-
lematic as described in Section 8.4.1. The authors conclude their system improves
with increasing historical data.

Chrysopoulos et al. and Holub et al. both describe a histogram-based approach
that models usages in each time slot of a day [Chry 14, Holu 13]. The usages are
modeled using a Gaussian weighting around the time of interest. An independent
evaluation of the algorithm concluded that the approach results in Area under the
Curve (AUC) values around 0.7 [Hube 18]. The difference between the appliances is
large.

Barbato et al. describe a pattern search algorithm [Barb 11]. The data used for the
pattern search is modeled as a vector of occurrences on each of N over the preceding
days. The pattern search is performed on a daily basis (ON and OFF days) as well
as on an hourly basis (ON and OFF hours). For each pattern, a probability expresses
the likelihood that after a particular pattern, an ON or OFF day or hour follows.
The evaluation by Huber et al. concludes that the approach has a similar AUC as
the histogram approach, but with a smaller deviation between appliances [Hube 18].

Truong et al. propose a Bayesian inference based approach [Truo 13a]. The algo-
rithm models the correlation between the use of appliances using a Markov chain,
describing different day types k. The probability P (xnmt) is described as:

P (xnmt) ∝
K∑

k=1
P (k | n)µkm(t) , (8.2)

where k is the day type, m the appliance, t the time slot, and P (k | n) the proba-
bility of day n being described by k. µkm(t) ∈ [0, 1] describes the probability of the
appliance m belonging to the day type k. Huber et al. find this to be the algorithm
with the least deviations between the appliances, but of similar AUC [Hube 18].
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8.3 A Combined Statistical Method
The prediction of an appliance usage xm,t can be modeled as the probability P (xnmt).
If the future usages are related to the past usages, this probability can be derived
from historical usages Xm,t. Based on this assumption, in the following a probabilistic
model is described that will give a probability for each appliance m for each time slot
t based on Xm,t.

8.3.1 Probabilistic Model
The model takes two main factors into account when computing the probability that
an appliance will be used:

• The time of day it is usually used,

• The time elapsed since it was used last.

For example, a dishwasher will typically be switched on in more or less regular inter-
vals and only at certain times of day (e. g., normally not at 2 a. m.). This is modeled
separately as Probability Distribution Functions (PDFs), wherein the following E will
denote the event elapsed time and D the event time of day. To give recommendations
to the user, the combined probability of these two events has to be calculated and
must be above a defined threshold to initiate a recommendation:

P (E ∩ D) = P (E | D)P (D)
if independent= P (E)P (D) .

(8.3)

The statistical independence of E and D is assumed here; although strictly speaking
not necessary, as the conditional probability P (E | D) can be computed from the
data if a sufficient amount of representative data are available. As this is quite
often not the case (cf. Section 8.4 for details on typical data sets), the independence
assumption results in more stable estimates of P (E ∩D). That independence is valid
can be checked on the data set by computing the product on the right and middle of
(8.3), and checking that equality holds.

The probability P (E) that the appliance is not used for a time period t (here
measured in minutes) is modeled by an exponential distribution:

P (E) = P (E ≤ t) =
1 − e−λt t ≥ 0

0 t < 0
. (8.4)

A maximum likelihood estimate of the parameter λ can be obtained from a sufficiently
large data set by computing the mean value of the time periods between consecutive
appliance-switch-on events. A good estimate of λ will be obtained when the time
between usage is fairly regular, resulting in a small value for the variance of the time
periods.

In contrast to using a continuous distribution for E, a discrete PDF for the event
D is estimated from the sample data by computing relative frequencies of appliance
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Figure 8.1: Example of estimates for P (D) (discrete density of appliance usage
throughout the day). Episode length is 2h, resulting in 12 episodes per day.

usage viewed over the 24-hour time period. This period has to be divided into dis-
crete intervals, which will be called episodes in the following. An episode must be
sufficiently large so that statistically valid relative frequencies (which are an estimate
of the probability that the appliance is used in a particular episode) can be obtained.
On the other hand, it has to be small enough to be of practical use. Episodes having
a length of 1 h to 2 h have shown to be a good compromise. To avoid issues with
episodes where no samples are contained in the data set, leading to density values
of zero, the Parzen window approach [Parz 62, Duda 00] can be applied, which is
basically an interpolation and smoothing method, typically using Gaussians. Fig-
ure 8.1 shows an example of a discrete P (D), and Fig. 8.2 the combined cumulative
distribution P (E ∩ D) computed from the GREEND data set [Mona 14].

8.3.2 Inactivity Detection
Most household appliances with non-homogeneous distribution in electricity con-
sumption require the user’s presence when starting the appliance. Thus, the predic-
tion of household appliance usage is often accompanied by a prediction of the home’s
occupancy; in some cases, an appliance might even be directly linked to the presence
of a specific person. Without ground truth on the occupancy, a strong indication
that can be found in the historical electricity data is the usage of such appliances in
recent history. Therefore, knowledge of the events that occurred in recent history is
added to the prediction by lowering the probability in case no appliance was used
in recent episodes. The previous 12 h to 24 h is of specific interest for this purpose
and improves the prediction significantly. This approach could be further developed
into a more sophisticated occupancy detection algorithm. For this purpose, a dataset
with ground truth occupancy data is desirable.

8.3.3 Probability Threshold Estimation
Now that the usage probability can be computed for any time of day, a threshold has
to be set that determines whether the appliance will be used or not. In combination
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Figure 8.2: Example of the combined cumulative distribution P (E ∩ D). Episode
length is 2h, resulting in 12 episodes per day.

with a dynamic electricity price, this may then either initiate an action on the home
automation system or send a recommendation to the house residents. Note, that the
absolute values of P (E ∩ D) depend heavily on the time interval chosen as episode
duration. Obviously, longer episodes result in higher probabilities for appliance usage
during this period; e. g., using 2h instead of 1h episodes would approximately double
the probabilities (exactly for uniform distribution, less so for uni-/multi-modal densi-
ties). The threshold can be computed from the training data by calculating P (E ∩D)
for each episode of the training set. Let pi be the predicted probability at the i-th
turn-on event of a total of N that occurs in the data, the threshold θp is computed
as the mean: θp = 1

N

∑N−1
i=0 pi. If extreme outliers are expected or more control over

the threshold is desired, the Median or any other quantile may be used instead.

8.3.4 Extended Model

The model described above works well when appliances are typically used in fairly
regular intervals, such as dishwashers. There are scenarios, however, where the as-
sumption fails; e. g., a household may use the washing machine every Saturday, not
only for a single washing cycle but two or three times in a row. While the estimate
for P (D) will still be valid, the parameter λ of the exponential distribution will be
invalid. This issue can be overcome by introducing an additional discrete random
variable U , describing how many times an appliance has been used during the past
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ne episodes. The parameter ne can be adjusted to the appliance at hand; e. g., for a
washing machine a 10h period may suffice. Generalization of (8.3) gives:

P (E ∩ D) =
∞∑

i=0
P (E ∩ D | U = i)P (U = i)

=
nm∑
i=0

P (E ∩ D | U = i)P (U = i)+

P (E ∩ D | U > nm)P (U > nm) ,

(8.5)

where nm is an upper limit for the number of times an appliance is used that can be
derived from the training data (a washing machine may be switched on 3 or 4 times in
a 10h interval, but not 20 times); from a certain value of i onwards, all probabilities
P (U = i) will usually be zero.

8.4 Evaluation

8.4.1 Accuracy is not a Good Performance Metric
In many publications on appliance usage prediction or energy load disaggregation,
the performance metric accuracy is chosen to evaluate the proposed classification
methods. A similar problem has been addressed for the segmentation task in Chapter
7, which resulted in the development of the Jaccard-Time-Span-Event-Score (JTES)
(cf. Section 7.4).

The accuracy A is defined as the proportion of data that has been classified
correctly:

A = TP + TN

n
, (8.6)

where n is the total number of events, TP is the number of positive events and TN is
the number of negative events that have been classified correctly (True Positives and
True Negatives, respectively). For the problem at hand, we get a true positive if the
algorithm predicts that an appliance is running during a given time period and the
appliance is actually doing so. In the same manner, for a true negative, the prediction
is that the appliance is off and this is truly the case. The denominator n is then the
total number of episodes.

The main issue with this commonly chosen metric is that it is not meaningful for
rare events; this is known as the accuracy paradox [Zhu 07, Valv 14]. Rare events,
however, are in most cases the standard when looking at the problem of appliance
usage prediction. The exceptions are usually appliances that do not require user
interaction, such as fridges or freezers. Consider, for instance, a dishwasher: this
appliance is normally used quite regularly, say every other day, and it takes about
2h to finish its cycle. This means, that in 96% of the total time the dishwasher
is off. Even if it is used twice as often, i. e., every day, it will still be off 92% of
the time. Publications making use of accuracy, such as [Heie 03, Barb 11, Basu 13,
Lee 13, Lach 14], could therefore easily be outperformed for rare events by simply
always predicting no occurrence (i. e., a Negative), which will result in an accuracy
of 96% for the dishwasher example above.
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The issue of selecting an appropriate metric has been addressed before by sev-
eral authors from various fields [Cook 07, Hand 09, Powe 11a, Mako 15]. The overall
performance of a binary classifier is usually captured using the Receiver Operating
Characteristic (ROC), which is a plot of the true positive rate (TPR) also called
sensitivity, recall, or detection rate) vs. false positive rate (FPR). These are given by:

TPR = TP

P
, FPR = FP

N
, (8.7)

where FP is the number of negative events that have been classified incorrectly as
positive ones, P is the total number of positive and N the total number of negative
events, with n = P + N . Examples of ROC plots are shown in the evaluation Section
8.4 in Fig. 8.4. A perfect classifier would show a rectangular curve, while the main
diagonal indicates complete randomness. Any point on the curve can be selected for
classification by choosing the classifier’s parameters appropriately. Every point results
in a different value for the accuracy A calculated as shown in (8.6). In publications,
where only accuracy is presented, this will usually be the point on the ROC curve
where the maximum value is obtained.

This is similar for the weighted F1-Score and the Matthews Correlation Coefficient
(MCC). While the weighted F1-Score also suffers from a bias when sample sizes for
positive and negative data are different, the MCC balances these.

In contrast to all these metrics, which measure performance for a single point on
the ROC, the AUC tries to capture the quality of the whole ROC in a single numerical
value by computing the area under the ROC curve (cf. Section 3.5.6). For a correctly
evaluated classifier, the AUC will range from 0.5 (total randomness) to 1 (perfect).
Although reducing two dimensions to a single one without losing information is not
feasible, AUC is still a valid metric for overall performance, and much better suited
than accuracy. Extensions of AUC can be found in literature, e. g. [Hand 09], who
suggests a weighted AUC.

Unfortunately, knowledge regarding evaluation metrics does not seem to be widely
spread in the energy usage prediction and disaggregation community. This has been
criticized before by several authors like [Kim 11, Mako 15], although with apparently
little effect.

8.4.2 Evaluation on GREEND
The evaluation of the GREEND dataset presented here was used for the development
of the approach described here. The results have previously been published [Wenn 17].

Data

Evaluating the proposed prediction method requires low-resolution power consump-
tion measurements of individual appliances. A few publicly available datasets exist,
usually containing the entire house and appliance-level energy consumption data.
Public datasets have been addressed in Section 4.1.3 and an overview of available
datasets is given in Table 4.1 Here, the GREEND dataset is used to evaluate the
probabilistic prediction model. This set was chosen because it provides enough mea-
surements to enable statistical analysis of events and is of sufficient data quality
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[Mona 14]. Other datasets, such as REDD [Kolt 11] or ECO [Beck 14], do not provide
enough data or the required quality (e. g., there are often long periods where data is
missing). The GREEND data set provides measurements of eight homes with vary-
ing numbers of appliances and measuring periods ranging from 134 to 500 days. The
data are sampled with a rate of 1 Hz and provide the power consumption in Watts
per appliance.

Comparing the results to previous usage prediction publications proved to be in-
feasible as the results are not comparable due to the chosen data set or evaluation
metric. Evaluations using artificially generated data [Heie 03, Barb 11] are not com-
parable as the amount of introduced randomness will dictate the result, especially
for rare events such as dishwasher usage. Such evaluation should not be consid-
ered valid. Publications evaluating appliance usage prediction on short datasets, e. g.
REDD [Truo 13a, Truo 13b], are also not comparable due to the insufficient amount
of data in the set. REDD contains data for only up to 19 days, a duration that
is considered totally inadequate for training and evaluation of rare events such as
dishwasher usage.

Events

As the prediction is based on event occurrences, where an event is defined by the
start and end of an appliance’s usage cycle, in the first pre-processing step the events
must be extracted from the continuous power consumption time series. As discussed
in Chapter 7, ground truth for such segmentation task is not common among elec-
tricity datasets. The chosen GREEND dataset does not provide ground truth usage
annotations, thus the events must be segmented using a segmentation algorithm. The
segmentation is performed using a lower bound thresholding algorithm as described
in Section 7.5 of the previous chapter. The thresholds are estimated using a window
size of 60 seconds and the threshold is defined by the average power consumption
within a window. In case an appliance’s power consumption falls below the threshold
during an event, this event will be partitioned, thus (incorrectly) generating multiple
usage cycles instead of a single one. For the method proposed in this paper, the
partitioning will not be an issue for computing the discrete estimate of P (D) in (8.3);
however, the estimate of λ of the exponential distribution P (E) in (8.4) would be
distorted. Since there is no ground truth to estimate a threshold for each appliance
automatically, the thresholds have been estimated empirically. The thresholds are
chosen so that partitioning is minimized. Further, the event length is only computed
by removing outliers of unusual length. Table 8.1 gives a statistical overview of the
extracted events for appliances selected from the GREEND data set.

Results

The extracted events are split into two disjoint parts, 60% for training and 40% for
evaluation. The training set is used to estimate λ in (8.4) by calculating the mean
value between consecutive appliance switch-on events. As an example, λ for the
dishwasher in house 3 is 2274 minutes (≈ 1.6 days). An episode length of 360 minutes
was chosen, which divides the day into four partitions. A smaller episode length leads
to a more time-precise prediction task, and vice versa. For DRM purposes, the exact
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Table 8.1: Statistics of extracted events of the GREEND data set, providing the
days between first and last events as well as the total events count for six different
homes. Also shown are resulting performance metrics using an episode length of 360
minutes.

H# Appliance Days Events AUC F1 MCC
0 coffee maker 308 676 0.703 0.708 0.498
0 dishwasher 306 143 0.684 0.389 0.348
0 fridge freezer 309 7353 0.999 0.999 0.972
0 lamp 307 215 0.701 0.524 0.344
0 television 117 445 0.567 0.852 0.251
0 washing mach. 309 256 0.591 0.378 0.190
1 bedside light 473 456 0.859 0.704 0.580
1 dishwasher 472 248 0.651 0.335 0.213
1 dryer 473 405 0.859 0.811 0.763
1 fridge 454 15 0.550 0.017 0.029
1 washing mach. 467 166 0.839 0.415 0.390
2 coffee maker 494 512 0.580 0.333 0.180
2 dishwasher 495 477 0.856 0.654 0.553
2 dryer 495 424 0.828 0.596 0.499
2 television 497 1446 0.770 0.786 0.618
2 washing mach. 497 794 0.809 0.728 0.634
3 coffee maker 456 250 0.719 0.397 0.349
3 dishwasher 456 211 0.843 0.414 0.394
3 fridge 460 1100 0.917 0.909 0.818
3 television 461 849 0.827 0.783 0.652
3 washing mach. 457 279 0.789 0.392 0.329
4 fridge freezer 282 137 0.802 0.471 0.451
4 television 280 2242 0.753 0.675 0.543
4 television 2 280 1657 0.657 0.706 0.332
4 washing mach. 263 81 0.641 0.198 0.168
5 fridge freezer 418 13054 0.734 0.985 0.665
5 lamp 416 322 0.627 0.420 0.193
5 television 417 1297 0.867 0.880 0.710
5 television 2 417 677 0.582 0.561 0.247
5 washing mach. 415 521 0.624 0.396 0.229
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usage time is of minor relevance, thus four partitions per day are chosen and give a
reasonable recommendation window.

The probability P (D) from (8.3) for each episode is calculated by binning the
appliance switch-on event duration into the corresponding episode-bin. Figure 8.3
shows P (E ∩ D) for the dishwasher in house 3. It clearly shows the characteristics
of P (D): The appliance is not likely to be used in the morning, very likely during
midday, and medium in the evening. With this information, we can define the user’s
preferred usage window and only recommend load shifts within this window. It
also shows the effect of P (E) on the combined probability, as the probability drops
immediately after the appliance is switched on. This respects the mean duration
between events, hence no load shift recommendation must be made until a significant
probability is reached in the successive episodes.

For usage prediction performance comparison between the appliances in different
homes, the ROC and the AUC are calculated by changing the threshold probability at
which the prediction will consider the appliances as being used; also the F1-Score and
MCC. The results are highly dependent on the house and appliance (cf. Table 8.1)
The worst prediction result is obtained for the fridge in house 1, a MCC of 0.029,
which is complete randomness. The reason is insufficient data: Table 8.1 shows that
there were only 15 events available in the whole data set, therefore good performance
cannot be expected.

Although very good results can typically be achieved for fridges, these are not ideal
for load shifting; dishwashers, washing machines, and dryers on the other hand are of
special interest, as they are well suited for this purpose. ROCs for these appliances are
shown in Fig. 8.4. The best prediction results for this type of appliance were achieved
for the dryer in house 1 with an AUC of 0.859 and MCC of 0.763. The home with
the most predictable dishwasher and washing machine usage is house 2, with AUC
0.856, MCC 0.553 (dishwasher), and AUC 0.809, MCC 0.634 (washing machine). On
the other hand, the results for house 0 are AUC 0.684, MCC 0.348 (dishwasher),
and AUC 0.591, MCC 0.190 (washing machine). The reason for the performance
difference compared to other homes lies in behavior changes of the inhabitants of
house 0, which can be shown by comparing the probability distribution P (D) for
training and evaluation data (see Fig. 8.5). While in the dishwasher’s training data,
the first episode of a day has a probability of 0.37, in the evaluation data it is 0.08.
The probability densities show that the events were moved to the last episode of the
day, an episode with a low probability in the training data. The changes, represented
as the Mean Square Error (MSE), between training and evaluation, are 0.0462 for
house 0 and 0.0033 for house 2. Thus, the preconditioned behavior consistency is
no longer given in house 0, a problem that could be overcome by analyzing recent
behavior changes and adapting P (D) accordingly.

8.4.3 Evaluation on DEDDIAG

The presented algorithm was developed and tested on the GREEND dataset. In the
following, the algorithm is tested in a day-ahead scenario (24 h) using the Domestic
Energy Demand Dataset of Individual Appliances in Germany (DEDDIAG) dataset.
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Figure 8.3: Usage probability prediction and real occurrence for each day of a
dishwasher during 2015/2/1 to 2015/2/6 (l.r.t.b). The gray area marks the time the
appliance is switched on, the curve the probability of the device being switched on at
each minute. For a clearer demonstration, we chose an episode length of 120 minutes;
the x-axis is labeled by the hour of the day.
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(a) H#0 – dishwasher

(b) H#1 – dishwasher (c) H#1 – dryer (d) H#1 – washing machine

(e) H#2 – dishwasher (f) H#2 – washing machine

(g) H#3 – dishwasher (h) [H#3 – washing machine

Figure 8.4: Examples of ROCs of the prediction algorithm on the GREEND data
set. Dishwasher, washing machine, and dryer were selected as these appliances are
particularly suited for load shifting. A perfect classifier would show a rectangular
curve, while the main diagonal indicates complete randomness.
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Figure 8.5: P (D) of the dishwasher in house 0 shows a significant difference between
(a) training and (b) evaluation.

So, unlike the GREEND scenario, where 60% of the data were used for training and
40% for testing, here all data preceding the predicted day are used for training.

Data

The DEDDIAG dataset is described in Chapter 5. For this experiment, the five
washing machines and four dishwashers providing manual annotations are used. The
appliances belong to 5 different houses. The measurements are extracted from the first
fully metered day to the last fully metered day. Since there are missing measurements
in the dataset, for some days, the prediction cannot be validated. To overcome this
problem, days that are affected by a recording gap >24 h have been excluded from
the prediction. This missing data may also affect the training, as we do not know
the behavior on the days with missing data.

Since P (D) and P (E) need to be initialized, we cannot start the evaluation on day
one. The initial training is performed using the first 4 weeks of available data. The
evaluation is then proceeded by predicting starting at midnight, based on all available
data preceding the predicted day. The initial last event required to determine P (E)
is saved from training. For each successive day, P (D) and P (E) are recalculated.

Events

The events are extracted using the thresholding algorithm as described in the previ-
ous Chapter 7 and as used in previous evaluation on GREEND. Since ground truth
exists, the algorithm can be trained based on the available manual annotations. It
was decided to not fully retrain the algorithm but to use the parameters found dur-
ing evaluation in Section 7.8. Thus, the used parameters are derived from a 5-fold
evaluation. The event ranges are taken as the minimum and maximum values of all
folds (cf. Table 7.2). Thresholds are taken as the average overall folds (cf. Table 7.1).
All parameters used in this evaluation are listed in Table 8.2. Using the parameters
from all 5 folds also means that the segmentation algorithm uses all annotated data
of each appliance. This annotated data is overlapping with this test data, thus not
making this a full test of both segmentation and prediction but only prediction.
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Table 8.2: Parameters used for the event segmentation using the thresholding algo-
rithm. The parameters are based on the evaluation presented in Chapter 7.

Item House Category Events Threshold Window size Event range
2 1 Washing Machine 34 2.6167 19 1504 – 13933
4 1 Dishwasher 77 0.3337 12 472 – 11759
5 5 Dishwasher 307 0.2741 1 879 – 17966
6 5 Washing Machine 265 0.2931 1 345 – 12485
12 2 Washing Machine 76 1.9314 7 2424 – 11280
19 4 Dishwasher 673 0.1567 4 890 – 10925
20 4 Washing Machine 879 0.3662 1 541 – 24815
24 8 Washing Machine 168 0.2861 9 1387 – 24566
26 8 Dishwasher 242 0.0675 5 1660 – 8794

Results

The available data for each appliance in the DEDDIAG dataset vary, thus the direct
comparison between appliances is difficult. The performance is measured using the
same performance metrics as for the GREEND dataset. Also the same episode length
of 360 minutes was used, splitting the day into 4 bins. An overview of the resulting
AUC, F1, and MCC are show in Table 8.3. Although the results cannot be directly
compared with the evaluation approach performed on the GREEND dataset, it can
be clearly shown that the F1 and MCC are lower.

No appliance achieves a MCC above 0.5, but also only one achieves a MCC be-
low 0.1. In terms of predicting human behavior that is always subject to random-
ness, everything above randomness can be seen as step towards usage prediction
that aids a DRM recommendation system. The washing machines achieve MCCs
of 0.4276, 0.2098, 0.0987, 0.3117 0.1797 where the corresponding AUCs are 0.7302,
0.6898, 0.6109, 0.7343, 0.6301. Dishwashers achieve MCCs of 0.3048, 0.1849, 0.2475,
0.2040 where the corresponding AUCs are 0.7631, 0.6377, 0.6924, 0.6191. The best-
performing washing machine has item id 4 and also is the appliance with the least
amount of available data of only 51 days resulting in 34 usages. The worst-performing
appliance, on the other hand, was id 12. This poor performance is explained by the
poorly performing segmentation algorithm. The segmentation using the parameters
determined in training results in only 76 events for a recording period of 733 days.
The appliance consumes electricity above the threshold until the resident manually
switches off the washing machine. This in combination with the resident’s choice of
switching the washing machine on before going to bed means that the machine con-
sumes energy above the threshold throughout the night, even when it is idle. Since
the segmentation algorithm uses filtering based on event length, such usages are not
seen as correct. This problem was also shown by the low JTES results of 0.3831
during evaluation of the segmentation. This highlights the close coupling of event
segmentation and usage prediction, as the prediction can only be trained and eval-
uated correctly with a working segmentation algorithm. While splitting events into
two does not influence the algorithm, detecting long stand-by times as ON times does
heavily influence the performance of this approach. If the washing machine usually
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Table 8.3: Result from day ahead prediction on DEDDIAG

Item House Category AUC F1 MCC
2 1 Washing Machine 0.7302 0.5231 0.4276
4 1 Dishwasher 0.7631 0.3946 0.3048
5 5 Dishwasher 0.6377 0.3067 0.1849
6 5 Washing Machine 0.6898 0.2787 0.2098
12 2 Washing Machine 0.6109 0.0863 0.0974
19 4 Dishwasher 0.6924 0.3893 0.2475
20 4 Washing Machine 0.7343 0.4373 0.3117
24 8 Washing Machine 0.6301 0.2725 0.1797
26 8 Dishwasher 0.6191 0.3930 0.2040

runs for 3 h, but the standby time of random length is seen as a usage, then the
calculation of P (D) will be wrong.

The best-performing dishwasher with a MCC of 0.3048 is again the one with
the least number of detected events. A small number of events also means that
the prediction was not tested against many behavioral situations that occur in a
household. So, the good score may simply be statistically irrelevant. Additionally, it
would be worth testing to adapt the approach to only using the most recent events
when calculating P (D) and P (E) in order to adapt to behavioral changes over time.

8.5 Summary
In this chapter, a probabilistic model for appliance usage prediction based on histor-
ical energy data was presented. The algorithm provides a solution to the last step of
the MLDR. The results show that the performance of the algorithm varies between
different households and appliances. The results on the GREEND dataset, tested
using a simple train-test split approach, look promising. Results on the DEDDIAG
dataset are less promising but are also better than random guessing.

It is not yet clear what is the best and most meaningful performance evaluation
metric for this sort of prediction problem. In contrast to usual classification problems,
the goal is not to predict the exact time an appliance is used but rather to give a
recommendation at convenient times. The results here have been evaluated using
AUC, F1, and MCC metrics and can act as baselines for future work. The most
challenging elements of usage prediction are behavior changes. Evaluation on the
DEDDIAG dataset also showed that insufficient segmentation will lead to insufficient
predictions. While the approach presented is not influenced by effects such as splitting
an event into two, it is heavily influenced by incorrect or inaccurate annotations
of length. Future work will need to investigate how to handle long-term behavior
changes such as those found in house 0 of the GREEND data set for the dishwasher.
It will also be worth investigating ways to adapt the model over time.
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(a) H#1, Item 2 – Washing Machine
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(b) H#1, Item 4 – Dishwasher
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(c) H#5, Item 5 Dishwasher
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(d) H#5, Item 6 Washing Machine
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(e) H#2, Item 12 Washing Machine
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(f) H#4, Item 19 – Dishwasher
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(g) H#4, Item 20 – Washing Machine
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(h) H#8, Item 24 – Washing Machine
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(i) H#8, Item 26 – Dishwasher

Figure 8.6: ROC plots of the day ahead prediction task evaluation on appliances
in the DEDDIAG dataset.
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Outlook
All elements of the electricity grid will see significant changes over the next few
decades; distributed production from photovoltaic systems will increase, fluctuations
from wind and solar farms will increase, battery storage capacities in private house-
holds will increase, and demand will increase as electric cars become more widely
used.

A well-maintained demand and supply equilibrium is and will continue to be a key
factor for the electricity grid to maintain quality. In financially rich and technically
well-developed countries, this is currently achieved by maintaining sufficient stand-
by capacities. This results in a definition where keeping the discomfort away from
customers is seen as the number one quality factor. This is and will remain the
biggest obstacle in the road to distributing Demand Response (DR).

In the face of these upcoming changes, the development of intelligent assistance
in handling the complexity increase seems inevitable. After 36 years of research
in computer-aided DR, significant advances have been made. At the same time,
only when all parts of the Machine Learning Demand Response Model (MLDR) are
advanced and connected, will customers benefit from these systems. The main steps
that the research needs to establish over the next few years in machine learning
concerning DR are: (1) Overcoming research challenges posed at all steps of the
model, (2) Introducing software frameworks that connect all the steps of the MLDR,
(3) Performing comparable user studies using these frameworks.

Scientific challenges similar to MNIST have not been established, making most
published research impossible to compare. Future researchers must move from iso-
lated, insufficiently documented experiments to open-source challenges, allowing oth-
ers to evaluate the many techniques and algorithms proposed. Further challenges
for identification, segmentation, and prediction will professionalize the research area
to a point where new ideas can be compared to previous work. Challenges for the
identification and segmentation have been published as part of the Domestic Energy
Demand Dataset of Individual Appliances in Germany (DEDDIAG) dataset publi-
cation. This thesis contributed to work that can be challenged for identification,
segmentation, and prediction; all on one dataset, DEDDIAG.

By making the data collection system open source, the complexity of collecting
data was significantly reduced and future research can benefit. Creating additional
long-term datasets that span multiple years will allow researchers to evaluate be-
havior changes. In addition to the raw monitored energy data, information such as
demographic data and manual annotations are needed for both new and established
datasets. No dataset currently reflects user behavior changes that are introduced by
DR. While behavior change does not affect identification or segmentation, it affects
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usage prediction. Thus, a future dataset that contains documented user behavior
changes based on DR recommendation is needed to evaluate prediction algorithms in
a scenario where they are applied.

Identifying appliances is the most advanced and least complex task in the MLDR.
The current research state shows that high versus low sample rates are, to some ex-
tent, a question of response time when performing real-time analysis. Research shows
that in Intrusive Load Monitoring (ILM) scenarios the appliances can be reliably iden-
tified using low sample rate data. In these scenarios, approaches for appliance cate-
gory identification can, for real-world scenarios, be extended beyond the per-window
classification task, which will increase the performance even further. No clear answer
exists for Non-Intrusive Load Monitoring (NILM) scenarios, which seem to be the
main reason for high sample rate approaches. Advancing appliance identification to
work on NILM is of high interest considering the widespread installation of smart
meters. At the same time, with the development of Internet of Things (IoT) devices,
adding the metering capability to each of the relevant appliances seems feasible.

Finding appliance usage in monitored, historic data is an under-researched topic.
The importance of the event segmentation task is underestimated: Load and usage
patterns cannot be derived without finding the start and stop of cycle-based appli-
ances. The common thresholding algorithm was shown to work effectively when fine-
tuned for single appliances, and by developing the Support Vector Machine (SVM)
based approach, the beginnings of a new kind of segmentation algorithm were made.
However, its performance leaves space for improvements and needs to be advanced
to a point where it functions on appliance categories, not only one specific appliance
model. By developing the Jaccard-Time-Span-Event-Score (JTES) and publishing
an annotated dataset, as well as providing challengeable results, a first step has been
made toward comparable research. Fast improvements can be expected by adding
annotations to existing datasets and evaluating the results based on performance
metrics such as the JTES.

Predicting appliance usage also means predicting human behavior. Our everyday
decisions depend on many factors, which are only partially observable in historic
electricity data. Having the prediction rely on historical electricity data will therefore
limit its capabilities. It can therefore be expected that other data sources that help
to identify household occupancy and habits need to be incorporated. The prediction
based on electricity data greatly depends on the performance of the segmentation
task but their interconnection and dependency have not yet been part of scientific
studies. As the last step in the MLDR, errors in the previous steps will impact the
usage prediction in end-to-end scenarios. Manually annotated datasets and better
segmentation algorithms are the basis for comparable usage prediction research. Of
all the steps, usage prediction comes with the most open-ended questions. Statistical
prediction models will have to be adapted to behavior change, especially considering
behavior changes are the goal of DR.

As with any scientific field, evolution derives from repeatable and comparable
research. It is time for research in machine learning DR to derive more compre-
hensive conclusions, establish challenges within the research community, and push
towards comparable research, so that any individual piece of research may stand on
the shoulders of giants.
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Summary

In the year 2023, the urgency to transform the world’s resource usage into a sus-
tainable system is an undeniable reality. In Germany, in 2020, half the country’s
electricity was already generated from renewable energy sources. By 2050, the share
of electricity gained from renewable resources will be significantly higher than to-
day in order to reach the goal to decrease greenhouse gas emissions by 80%. The
under- and overproduction from wind and solar introduce high fluctuations on the
supply side. The European grid stability is well managed on the grid level and the
increasing problems arising from the increased share of renewable energy sources are
mitigated using traditional incidence response activities. Some of these activities are
simply taking wind turbines off the grid in times of overproduction. However, in
times of underproduction, gas turbines, and other stand-by power plants are used to
compensate for the increased demand. Adding the demand side to the control equa-
tion through Demand Response Management (DRM) is seen as a major step toward
mitigating the problems introduced by fluctuations.

While the research in computer-aided Demand Response (DR) has come a long
way since the first publications on the topic, the impact on our everyday life is barely
visible. It is challenging to imagine that when the research in computer-aided DR
began 36 years ago, the participation of private households in the grid stability re-
mains in its infancy. Having private households participate in load balancing requires
incentives and adjusting the demand to the supply creates discomfort for residents.
Financial incentives, in the form of dynamic electricity prices, are starting to emerge.
In an ideal and oversimplified scenario, the optimum DR policy is: run the appliance
whenever the electricity price is lowest. The optimum policy to minimize the elec-
tricity cost must be operated by someone. Studies showed that especially Real Time
Pricing (RTP) models require a complexity reduction to be accepted by the end-user.
Thus, the use of dynamic pricing is still not widespread. The effectiveness of all
domestic DR programs depends heavily on the end-users willingness to participate.
Manual DRM is cumbersome, and electricity is, for most people, not a decisive vari-
able in their budget. Thus, machine learning can be the enabler for DR by lowering
the required involvement by providing detailed insights into an individual’s electricity
usage and providing recommendations or by directly taking automated actions such
as delaying the start of an appliance.

The desired information for DRM is: Which appliance will be used, when will it
run, and how long will it take? Appliance demand, profile, and shifting boundaries
as well as the residents’ disutility form a complex system to be optimized. This opti-
mization requires data, the centerpiece of most machine learning research. Data can
be sourced using a wide range of features, including, but not limited to geographic
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features, standard load profiles, weather data, and more direct measures such as high-
resolution electricity monitoring using smart meters. In DR the data is described as
macroscopic or microscopic. Macroscopic data do not directly relate to the individ-
ual household and rather provide insight into the residential sector the household is
in. Microscopic data have a direct relation to the household and residents. With the
primary source being smart meters, microscopic data have the potential to give direct
electricity consumption information for a specific household. The required load mon-
itoring to gather microscopic data is described as Intrusive Load Monitoring (ILM)
and Non-Intrusive Load Monitoring (NILM). The main difference lies within the
number of metering points used to monitor a household’s electricity usage. In NILM
only a single metering point is used, relying on decomposing the aggregated load into
its components through mathematical algorithms. In ILM, multiple metering points
are located throughout the household, providing direct metering of different areas or
even appliances. Next, to load monitoring, secondary sources of data such as occu-
pancy, location, and appliance-specific labels are used. While smart meters are being
installed throughout the world, the need to extract knowledge from the monitored
data is rising. In detail, ILM and NILM are closely related, as the goals in both cases
are the same, and NILM only adds the complex task of disaggregation to an already
complex task.

Over the years a number of datasets containing microscopic data of private house-
holds have been made available for research purposes. These datasets are the basis
for research within the field of computer-aided DR. Knowledge is retrieved from data
using a bottom-up or top-down approach, depending on whether the data source is
microscopic or macroscopic. Most research is put into bottom-up approaches, which
on the one hand are more intrusive as they provide more detailed information about
a single household, but on the other hand, that information can be processed within
the household without affecting privacy concerns. The focus of the techniques and
algorithms in this thesis is bottom-up approaches. A new perspective on the steps
required to convert collected data into actions or recommendations in bottom-up
scenarios called Machine Learning Demand Response Model (MLDR) is presented.
The model is organized in three levels: data → knowledge → action. Knowledge is a
valuable asset derived from data that aids decision-making. A specific knowledge ex-
traction model is presented, showing the different steps required for machine learning
based DR using a bottom-up approach. These steps are data acquisition, identifying
appliances, segmentation of usage events, creating of load profile and usage pattern,
and finally predicting the usage. This thesis contributes work to all these required
knowledge extraction steps and provides a critical view of the current state of scien-
tific research. Each of the disciplines has received attention since DR emerged in the
1980s.

Data are the starting point for all research in this area. Datasets usually pro-
vide individual load monitoring of various household appliances as well as the total
consumption in the form of monitoring of the three-phase mains. Over the years,
multiple datasets have been released for research purposes. The datasets can in gen-
eral be differentiated by: location, count, duration, sample frequency, level at which
data were collected (whole house, rooms, plugs, appliances), and any additional in-
formation provided. Collecting load-monitoring datasets over long periods of time
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is a non-trivial task, especially when recorded over a long time in a real-world resi-
dential environment. Sample rates vary from 1/60 Hz to 250 kHz, and their duration
from 1 h to multiple years. As part of a load-shifting research project, a new dataset
called Domestic Energy Demand Dataset of Individual Appliances in Germany (DED-
DIAG) was collected and released under an open-source license. The dataset focuses
on appliances where the load can be shifted, such as dishwashers and washing ma-
chines. It provides data of 15 homes over a period of up to 3.5 years, containing,
in total, 50 appliances monitored at 1 Hz. A new monitoring system was developed
and the description and developed software was also released under an open source
license. Unlike previously described monitoring systems for research purposes, the
system uses hardware that is readily available for purchase at a very low cost. It
was designed so that the per-appliance monitoring equipment could be installed by
non-technical people, with the goal that the participating residents are able to install
the system on their own. The collected data in each household is sent to a central
server, creating the DEDDIAG dataset. Since no available dataset provides ground
truth of appliance usages, manual annotations were added to the system. The manual
annotations were created using a developed, collaborative web application.

The second step after data acquisition is appliance identification; the task of asso-
ciating an appliance measurement with an appliance category or model. In machine
learning terms this presents a classification problem. Approaches can be separated
into two groups: low and high sample rates. A low and high sample rate approach is
presented and developed for a sample rate of 1 Hz. The low sample rate approach was
developed and published as a baseline for the DEDDIAG dataset. Sliding windows
are used to convert the continuous time series into data vectors of event lengths. For
each window, a feature vector is created using the window’s mean value as well as
the coefficients of a Discrete Wavelet Transformation (DWT). The classification is
performed using the k-Nearest-Neighbor (kNN) classifier for nine different categories:
Coffee Machine, Dishwasher, Dryer, Freezer, Office Desk, Other, Refrigerator, TV,
and Washing Machine. K-fold cross-validation has been used to evaluate the perfor-
mance using a sophisticated splitting approach. Cross-validation on long time-series
data is not trivial, especially in a scenario where the data of each category originate
from different appliances. The evaluation using different time window sizes reveals
that above window sizes of 256 seconds, all appliances can be detected with a F1
score greater than 0.8. Following this idea, a high sample rate approach called Re-
currence Plot Spacial Pyramid Pooling (RPSPP) was developed. It uses features
called voltage-current (V-I) trajectory, a 2-dimensional feature containing one nor-
malized wave cycle of voltage and current. The V-I trajectory is transformed into
two unthresholded Recurrence Plots (RPs), which are then classified using a deep
neural network. A similar approach called Weighted Recurrence Plot (WRG) was
previously proposed, relying on handcrafted parameters for each evaluated dataset.
The RPSPP does not rely on such parameters and still outperforms the proposed
method. During an evaluation of their work, it was found that the authors of WRG
published false results, as their described evaluation differed from their implementa-
tion. Finding this deviation was possible because the authors published some of their
source code. An evaluation of the new RPSPP algorithm, as well as a re-evaluation
of the WRG with a corrected evaluation method, showed that RPSPP has similar or
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superior performance. The algorithms were evaluated in a 5-fold cross-validation as
well as a leave-one-group-out evaluation. These were performed on three published
high-sample rate datasets, namely: COOLL, WHITEDv1.1, and PLAID.

The knowledge extraction step that follows the appliance identification is segmen-
tation; the forgotten task that has received little research attention. Segmentation
requires extracting usage events from appliance measurements in the form of start
and stop timestamp pairs. The most commonly used approach to find appliance
usage is a lower bound threshold algorithm. The thresholding algorithm predicts
the appliance being ON or OFF (steady state) for each window. The approach is
frequently used and mentioned in publications but was never evaluated. Since event
annotations are available in the DEDDIAG dataset, the algorithm was evaluated for
the first time. As part of this test, a new performance metric called Jaccard-Time-
Span-Event-Score (JTES) was proposed to evaluate the event as a whole instead of
evaluating every data point in a time series. The JTES metric is designed to eval-
uate the segmentation results in relation to their real-world implications, punishing
unwanted scenarios. Evaluating the thresholding approach using the JTES showed
that for many appliances the thresholding algorithm works well, but also showed a
major problem: The thresholding algorithm relies on the hypothesis that the start
and stop of an appliance are separated by a single power usage threshold. This does
not hold for many appliances, especially washing machines which may have a high
stand-by electricity consumption until the residents unload the machine. To over-
come this limitation, a Support Vector Machine (SVM) based classification approach
was developed. The approach classifies the start and stop and combines both into
a single event, overcoming the limitations of a thresholding approach. The SVM
approach was developed before the JTES and showed great potential based on data
point evaluation. Re-evaluating the algorithm based on the JTES showed that it also
has limitations. For some appliances with a simple load profile it has similar per-
formance as the thresholding, but in most the simple thresholding still outperforms
the SVM approach. This forgotten task is a very important step and requires much
more research attention. The thresholding evaluation was published as part of the
DEDDIAG dataset, presenting a challenge baseline for other research.

The final step in knowledge extraction is appliance usage prediction. It is per-
formed to predict future usage, thus providing the user with relevant recommenda-
tions based on their predicted future behavior. The development of usage prediction
heavily depends on segmentation. Appliance usage is commonly used to train predic-
tion algorithms and is absolutely necessary for evaluation. A proposed probabilistic
model trained on historical appliance usage combines two probabilities. Firstly, the
model calculates a resident’s usage preference per time slot over a certain period by
dividing each day into several episodes. Secondly, the time between usages is mod-
eled as an exponential distribution. The events required to estimate the probabilities
are segmented using the lower bound thresholding algorithm. Two evaluations are
presented based on GREEND as well as the DEDDIAG dataset. Predicting appli-
ance usage solely on historical usage is challenging because many factors influence a
person’s decision to use an appliance. Therefore, one cannot expect to predict the
usage perfectly, but the results of this research show that the resident’s preferences
can be modeled using the proposed probabilistic model.
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Figure A.1: Stacked average daily power demand of monitored appliances in Houses
0–3 of the Domestic Energy Demand Dataset of Individual Appliances in Germany
(DEDDIAG) dataset. X-axes ranges are aligned, Y-axes are not aligned to increase
per house readability. Each color block is stacked and shows daily average power
demand of an appliance. [Wenn 21b], License: CC-BY 4.0.
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Figure A.2: Stacked average daily power demand of monitored appliances in Houses
4–7 of the DEDDIAG dataset [Wenn 21b]. X-axes ranges are aligned, Y-axes are not
aligned to increase per house readability. Each color block is stacked and shows daily
average power demand of an appliance. [Wenn 21b], License: CC-BY 4.0.
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Figure A.3: Stacked average daily power demand of monitored appliances in Houses
8–11 DEDDIAG dataset. X-axes ranges are aligned, Y-axes are not aligned to increase
per house readability. Each color block is stacked and shows daily average power
demand of an appliance. [Wenn 21b], License: CC-BY 4.0.
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Figure A.4: Stacked average daily power demand of monitored appliances in Houses
12–14 DEDDIAG dataset. X-axes ranges are aligned, Y-axes are not aligned to
increase per house readability. Each color block is stacked and shows daily average
power demand of an appliance. [Wenn 21b], License: CC-BY 4.0.
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Table A.1: List of houses and appliances observed in the DEDDIAG dataset. The
columns “Missing > 1h5 sec” and “Missing > 1day” provide an indicator for missing
data, defined as the sum of gaps in relation to the duration.

Item ID Category Type First date Last date Duration Missing
> 1h5sec

Missing
> 1day

House 0
10 Refrigerator 2016-11-30 20:24:05 2019-06-02 17:56:17 913 days 19.29% 7.85%

House 1
1 Refrigerator 2016-10-06 19:25:07 2017-04-11 16:00:06 186 days 7.44% 2.91%
2 Washing Machine 2017-02-18 15:01:05 2017-04-11 15:00:00 51 days 22.17% 2.80%
4 Dish Washer Bosch 2016-10-06 20:18:07 2017-04-11 16:00:04 186 days 59.40% 49.26%

House 2
11 Freezer 2016-12-08 15:21:13 2020-08-20 22:00:07 1351 days 6.85% 6.76%
12 Washing Machine 2016-12-08 15:24:12 2018-12-12 14:43:51 733 days 14.73% 11.30%

House 3
13 Freezer Miele F 12020 S-3 2017-01-07 09:57:15 2018-05-27 07:59:33 504 days 2.50% 2.07%
14 Washing Machine Bosch Maxx 6 ecoSpar 2016-12-20 09:18:54 2019-07-13 10:00:00 935 days 6.57% 3.34%
16 Refrigerator Miele K14827 SD ED/CS 2017-01-07 09:57:15 2019-07-13 10:00:07 917 days 3.56% 3.27%

House 4
17 Refrigerator Liebherr KTS14* 2017-04-17 19:33:30 2020-11-16 09:32:07 1308 days 1.02% 0.78%
18 Freezer AEG arctis 2017-04-17 19:15:04 2020-12-09 09:59:13 1331 days 0.68% 0.44%
19 Dish Washer Bosch 2017-04-17 19:51:27 2020-12-09 09:00:00 1331 days 0.46% 0.22%
20 Washing Machine AEG Lavamat Exclusive 54569 2017-04-17 19:17:14 2020-12-09 09:00:00 1331 days 0.78% 0.31%

House 5
5 Dish Washer Bosch SMS69N48EU 2016-08-10 23:26:28 2019-01-18 08:00:00 890 days 32.59% 12.78%
6 Washing Machine Miele SOFTTRONIC W2241 2016-08-16 10:32:18 2019-01-17 17:08:06 884 days 21.39% 10.25%
8 Office Desk 2016-12-06 12:58:02 2019-01-18 08:00:08 772 days 4.81% 4.44%
9 Refrigerator Bauknecht 2016-08-10 14:10:32 2019-01-18 08:00:00 890 days 10.40% 8.23%
30 Coffee Machine Bezzera BZ09 2017-06-28 17:26:00 2019-01-18 08:00:00 568 days 6.19% 1.06%

House 6
31 Dish Washer 2017-07-22 09:00:03 2018-02-01 23:00:00 194 days 5.27% 5.24%
32 Refrigerator 2017-07-22 08:54:03 2018-02-01 23:00:00 194 days 5.24% 5.21%
33 Washing Machine Miele Novotronic W1514 2017-07-22 09:16:03 2017-08-12 17:00:00 21 days 0.00% 0.00%
34 Dryer Miele Novotronic T7644C 2017-07-22 09:13:02 2018-02-01 16:00:00 194 days 5.34% 5.27%
36 Dish Washer Siemens Extrakl. Festival Spuler 2017-07-26 21:20:02 2018-02-01 23:00:00 190 days 3.65% 3.62%
37 Refrigerator Haier HEC MCS662FIX 2017-07-26 21:11:03 2018-03-05 10:00:00 221 days 4.63% 4.60%

House 7
68 Washing Machine Miele Hydromatic W701 2017-10-08 15:01:04 2020-12-09 09:40:09 1157 days 29.35% 29.12%
69 Other Whirlpool 2017-10-08 15:01:04 2018-07-20 08:05:50 284 days 35.06% 34.14%
70 TV Sony KDL-48W605B 2017-10-08 15:01:04 2020-05-04 11:00:07 938 days 14.13% 13.88%
71 Coffee Machine Saeco Magic Comfort+ 2017-10-08 16:00:00 2020-12-09 10:00:00 1157 days 29.38% 29.12%

House 8
24 Washing Machine Miele W 5873 WPS Edition 111 2017-06-06 15:29:23 2018-07-28 08:00:12 416 days 1.13% 1.01%
26 Dish Washer 2017-06-18 13:47:12 2018-07-28 08:00:00 404 days 1.13% 1.04%
27 Coffee Machine Bezzera Mitica Top MN 2017-06-18 13:37:34 2018-07-28 08:00:12 404 days 1.04% 1.03%
28 Office Desk 2017-06-18 14:13:03 2018-07-28 08:00:13 404 days 1.09% 1.03%
35 Refrigerator 2017-07-23 20:26:03 2018-07-28 08:00:13 369 days 0.01% 0.00%
51 Smart Meter Phase Modbus Smart Meter Phase 1 2017-09-05 15:45:29 2018-07-28 08:00:00 325 days 0.28% 0.00%
52 Smart Meter Phase Modbus Smart Meter Phase 2 2017-09-05 17:53:03 2018-07-28 08:00:00 325 days 1.83% 1.38%
53 Smart Meter Phase Modbus Smart Meter Phase 3 2017-09-05 17:55:03 2018-07-28 08:00:00 325 days 9.71% 9.38%
59 Smart Meter Total Modbus Smart Meter Total 2017-09-12 14:10:03 2018-07-28 08:00:00 318 days 13.97% 13.58%

House 9
44 Dish Washer 2017-08-05 18:13:18 2019-02-03 10:09:47 546 days 5.86% 5.52%
45 Refrigerator 2017-08-05 18:07:03 2020-03-17 08:00:07 954 days 2.98% 2.92%
46 Washing Machine 2017-08-05 18:13:30 2020-03-17 08:00:00 954 days 2.99% 2.93%

House 10
65 Refrigerator 2017-09-20 16:04:04 2019-11-01 13:00:00 771 days 8.13% 7.62%
66 Dish Washer 2017-09-20 17:00:00 2019-11-01 13:00:00 771 days 8.18% 7.63%
67 Washing Machine 2017-09-20 16:07:55 2019-11-01 13:00:00 771 days 8.14% 7.62%

House 11
38 Dryer 2017-07-27 20:37:35 2017-12-15 09:00:00 140 days 0.28% 0.00%

House 12
61 Washing Machine 2017-09-13 16:55:35 2018-07-31 11:00:00 320 days 3.29% 3.29%
62 Dish Washer 2017-09-13 16:50:13 2018-07-31 11:00:00 320 days 3.27% 3.27%
63 Dryer 2017-09-13 17:00:00 2018-07-31 11:00:00 320 days 3.30% 3.30%
64 Refrigerator 2017-09-13 16:50:04 2018-07-31 11:00:10 320 days 3.28% 3.28%

House 13
39 Washing Machine 2017-07-30 10:56:08 2018-10-06 11:00:05 433 days 7.59% 7.56%
40 Dish Washer 2017-07-30 10:30:38 2018-10-06 11:00:09 433 days 3.00% 3.00%
41 Refrigerator 2017-07-30 10:58:59 2018-10-06 11:00:10 433 days 4.73% 4.73%

House 14
81 Other Heat Pump 2017-10-24 11:44:22 2019-10-14 16:06:02 720 days 19.08% 19.05%
82 Refrigerator 2017-11-12 14:58:03 2020-12-09 09:59:59 1122 days 10.87% 10.51%
83 Washing Machine 2017-11-12 15:49:05 2020-12-09 09:40:16 1122 days 10.54% 10.52%
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Table A.2: List of appliance usage annotation labels as provided in the DEDDIAG
dataset.

Label ID Item ID Label Name Item Name Annotation
Count

House 0
29 10 Light Refrigerator 17
30 10 Compressor Refrigerator 191

House 1
33 1 Compressor Refrigerator 83
34 1 Light Refrigerator 64
35 2 Normal Washing Machine 33
36 2 Short Washing Machine 4
17 4 PreWash Bosch 2
18 4 Normal Bosch 67

House 2
37 12 Normal Washing Machine 69

House 4
2 19 High Bosch 28
4 19 Low Bosch 119
19 19 PreWash Bosch 1
24 19 Error Bosch 1
6 20 Short AEG Lavamat Exclusive 54569 Electronic 55
7 20 40 degrees AEG Lavamat Exclusive 54569 Electronic 65
8 20 60 degrees AEG Lavamat Exclusive 54569 Electronic 37
11 20 90 degrees AEG Lavamat Exclusive 54569 Electronic 2
40 20 PreWash AEG Lavamat Exclusive 54569 Electronic 2
41 20 Unkown AEG Lavamat Exclusive 54569 Electronic 1

House 5
9 5 ECO Bosch SMS69N48EU 201
10 5 Normal Bosch SMS69N48EU 70
15 5 PreWash Bosch SMS69N48EU 4
5 6 Normal Miele SOFTTRONIC W2241 73
21 6 Short Miele SOFTTRONIC W2241 4
25 6 Error Miele SOFTTRONIC W2241 1
26 6 PreWash Miele SOFTTRONIC W2241 3
31 9 Compressor Bauknecht 97
32 9 Light Bauknecht 113

House 8
14 24 Normal Miele W 5873 WPS Edition 111 100
12 26 Normal Dish Washer 225
22 26 Medium Dish Washer 1
23 26 Short Dish Washer 1





C H A P T E R B

Appliance Identification

Table B.1: Original baseline result of appliance category identification using k-
nearest neighbors classification as published in [Wenn 21b]. Results show F1-score for
each category at tested window sizes as well as the weighted average over all classes
based on a simple 5-fold cross-validation. The values have be reevaluated in this
thesis using a corrected cross validation approach (cf. Table 6.1).

Window Size 4 8 16 32 64 128 256 512 1024 2048
Coffee Machine 0.9137 0.9193 0.9160 0.9214 0.9404 0.9412 0.9304 0.9348 0.9434 0.9552
Dish Washer 0.5163 0.5735 0.6452 0.7193 0.7878 0.8391 0.8634 0.8782 0.8930 0.9113
Dryer 0.8457 0.8542 0.8571 0.8714 0.8901 0.9083 0.9129 0.9293 0.9413 0.9433
Freezer 0.8002 0.8198 0.8391 0.8576 0.8803 0.9042 0.9052 0.9194 0.9468 0.9767
Office Desk 0.7295 0.7567 0.7824 0.8024 0.8219 0.8473 0.8549 0.8844 0.9274 0.9500
Other 0.8517 0.8575 0.8639 0.8685 0.8776 0.8893 0.9041 0.9198 0.9358 0.9556
Refrigerator 0.7010 0.7239 0.7534 0.7857 0.8178 0.8466 0.8675 0.8987 0.9293 0.9504
TV 0.7581 0.8222 0.8725 0.9020 0.9189 0.9335 0.9415 0.9465 0.9556 0.9663
Washing Machine 0.6232 0.6736 0.7295 0.7801 0.7876 0.7904 0.8003 0.8194 0.8420 0.8702
Weighted Average 0.7443 0.7743 0.8043 0.8326 0.8566 0.8764 0.8855 0.9023 0.9231 0.9421
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C H A P T E R C

Appliance Segmentation

Table C.1: Original baseline result of appliance segmentation using thresholding
as published in [Wenn 21b]. While the task for dish washers and washing machines
does not distinguish between different labels per item, for refrigerators the two labels
compressor (C) and light (L) are evaluated as two separate tasks. Results are eval-
uated using Jaccard-Time-Span-Event-Score (JTES) and F1-score. Result is shown
for window sizes where JTES was highest in a trial with sizes ranging from 1 to 24.

Item Category Labels Window Size JTES F1

1 Refrigerator 33 (C) 13 0.8817 0.9967
1 Refrigerator 34 (L) 1 0.1589 0.7960
2 Washing Machine 35, 36 24 0.6055 0.9994
4 Dish Washer 17, 18 22 0.7167 0.9959
5 Dish Washer 9, 10, 15 1 0.2370 0.9958
6 Washing Machine 5, 21, 26, 25 24 0.0385 0.9196
9 Refrigerator 31 (C) 7 0.8855 0.9967
9 Refrigerator 32 (L) 1 0.2713 0.8089
10 Refrigerator 29 (L) 1 0.0403 0.9530
10 Refrigerator 30 (C) 5 0.9348 0.9989
12 Washing Machine 37 24 0.4587 0.9768
19 Dish Washer 2, 4, 19, 24 1 0.4607 0.9370
20 Washing Machine 6, 7, 8, 11, 40, 41 1 0.4974 0.9737
24 Washing Machine 14 1 0.3796 0.9818
26 Dish Washer 12, 22, 23 24 0.0817 0.8722
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